簡易檢索 / 詳目顯示

研究生: 張家豪
Chia-hao Chang
論文名稱: 以CeO2-ZrO2固態氧化物為參考端的薄膜型氧氣感測器
A thin film oxygen sensor with solid-state ceria-zirconia reference
指導教授: 周賢鎧
Shyankay Jou
口試委員: 鄭瑋鈞
Wei-Chun Cheng
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 96
中文關鍵詞: 氧氣感測器CeO2-ZrO2 參考端Pt-YSZ
外文關鍵詞: Oxygen Sensor, CeO2-ZrO2 reference, Pt-YSZ
相關次數: 點閱:207下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用CeO2-ZrO2固態氧化物為參考端來製備薄膜型氧氣感測器。首先以磁控式共濺鍍系統沉積Pt-YSZ薄膜,並利用不同還原條件以形成多孔的Pt-YSZ電極。多孔的電極結構是為了增加其三相介面比例,並滅少其應答時間。以不同Ar與O2比例,進行反應式共濺鍍出的白金氧化先趨物(PtOx-8YSZ)經由真空或大氣氣氛之下還原,熱處理溫度與時間分別為600°C,及1小時,可以於SiO2/Si基材上形成多孔的Pt-YSZ薄膜,發現於CeO2-ZrO2基材會形成以裂隙為主體的薄膜。經以上實驗發現,在CeO2-ZrO2上的Pt-8YSZ薄膜很難形成多孔結構。
以CeO2-ZrO2為基材,8YSZ為電解質,利用指叉電極來製作Pt-8YSZ電極的氧氣感測器,經單氣室量測系統,以流量皆為200sccm的O2/N2氣氛進行感測器效能的量測。在600°C下量測時,其電壓差為2mV,而應答時間為0.5s~1.5s。由實驗結果可知,以CeO2-ZrO2為參考端的薄膜型氧氣感測器是可行的。


In this research, we fabricate thin film oxygen sensors with CeO2-ZrO2 solid-state reference. First, we use magnetron co-sputter to deposit Pt-8YSZ films and use different reduced conditions to form porous Pt-8YSZ electrode. The electrode with porous structure is expected to increase the three-phase area and reduce response time. We used different Ar and O2 ratios to form PtOx-8YSZ film by co-sputter technology and the PtOx-8YSZ film could be reduced to Pt-YSZ film in vacuum or atmosphere at 600°C for 1hrs. Pt-8YSZ film is porous structure on SiO2/Si substrate, but it is hard to form the porous structure on CeO2-ZrO2 substrate.
We use the CeO2-ZrO2 as reference, 8YSZ as electrolyte and Pt-8YSZ as electrode by shadow mask to form a sensor cell, then tested the sensor performance in a single chamber system using 200 sccm flow rate in O2/N2 environment. The emf value is 0.4mV~2mV and the response time is 0.5s~1.5s for this cell measured at 600°C~800°C. This result is not as good as conventional oxygen sensor, but we already prove feasibility of a thin film oxygen sensor with CeO2-ZrO2 solid-state reference.

目錄 中文摘要………………………………………………………………..I 英文摘要……………………………………………………………….II 誌謝………………………………………………………………….....III 目錄………………………………………………………………….....IV 圖索引………………………………………………………………....VII 表索引………………………………………………………………….X 第一章 前言……………………………………………………………..1 第二章 文獻回顧……………………………………………………….3 2.1氣體感測器……………………………….…………………………………….4 2.1.1氣體感測器之分類……………………………….………………………..4 2.2氣體感測器之電解質……………………………..…………………………..10 2.2.1安定性氧化鋯…………………………………………...............10 2.3氣體感測器的電極結構及工作原理…………………………………15 2.3.1電極材料…………………………………….....………………..15 2.3.2電極結構及工作原理………………………………….……………16 2.3.3離子-電子混合導體電極…………………………………………….18 2.4實驗原理…………………….………………..……………………………19 2.4.1物理氣相沈積(PVD)……………………..…………………………….19 2.4.2化學氣相沈積(CVD)………………………………………………….20 2.4.3濺鍍原理…………..………………………………..……………….21 2.4.4射頻濺鍍…………..………………………………………………….23 2.4.5反應式濺鍍…………..…………..……………………………………….24 2.4.6薄膜成核及成長機構…………..…………………………………….25 第三章 實驗方法及步驟..................................................................................26 3.1實驗藥品與材料規格.....................................................................................26 3.2實驗儀器與裝置........................................................................................28 3.2.1磁控式共濺鍍系統(Magnetron Co-Sputtering System )........................29 3.2.2真空爐(石英管狀爐)...............................................................................31 3.2.3 CeO2-ZrO2氧化物式參考分壓之單氣室量測........................................32 3.3分析儀器.................................................................................................33 3.3.1 XRD…………………………………..........................................34 3.3.2 FESEM…………………………………..........................................34 3.4實驗流程與步驟……………………………………………...……………….35 3.4.1實驗步驟流程圖…………………….………..........................................35 3.4.2 CeO2-ZrO2基材製作流程與熱處理曲線……….....................................36 3.4.3製備多孔性Pt-8YSZ工作電極……………….….....................................37 3.4.4濺鍍8YSZ電解質薄膜……………….….....................................39 第四章 結果與討論……………………………………………………………41 4.1 CeO2-ZrO2 Disk基材性質…………………………………………………41 4.2 8YSZ電解質薄膜……………………..……………………………….44 4.2.1氧氣流量對8YSZ電解質薄膜的影響…………………….……….......44 4.2.2熱處理對8YSZ電解質薄膜的影響…………………….……….......48 4.3 Pt-8YSZ電極…………………………………………………...……..52 4.3.1直流電源(DC)瓦數對Pt-8YSZ薄膜的影響…………….……….......52 4.3.2不同氬氧比下沈積的Pt-8YSZ經還原熱處理後孔隙率的變化…….57 4.3.3 Pt-8YSZ還原溫度分析………………….…………………………….59 4.3.4大氣及真空下還原熱處理對Pt-8YSZ的影響………………………….64 4.4 Sensor Cell/ CeO2-ZrO2感測元件的量測.....................................................68 4.5以指叉電極製備Pt-8YSZ電極的Oxygen sensor cell...................................69 4.5.1以指叉電極製備Pt-8YSZ電極……...................................................69 4.5.2以指叉電極製備的Sensor Cell/ CeO2-ZrO2感測元件的量測...............71 第五章 結論……………………………..………………….……………………80 參考文獻……………………………..……………….…….……………………81 *附錄1……………………………..………………….……………………84 *附錄2……………………………..………………….……………………86 圖索引 圖2.1以CeO2-ZrO2氧化物為參考端的薄膜型氧氣感測器截面示意圖…………3 圖2.2電位式氧氣感測器構造圖……………………………………………………5 圖2.3極限電流式氧氣感測器………………………………………………………9 圖2.4電流式氧氣感測器電流輸出與氧氣濃度的關係…………….……………9 圖2.5氧化鋯的三種同質異形體…………………………………………………12 圖2.6氧化鋯添加氧化釔的相圖……………………………………………13 圖2.7電極反應路徑示意圖………………………………………………17 圖2.8電壓(cathode)對反應性氣體流速之磁滯曲線……………………………25 圖3.1自製Shadow Mask…………………………………………………27 圖3.2磁控式共濺鍍系統 (Co-sputtering System)………………………30 圖3.3真空爐(石英管狀爐)示意圖………………………………………31 圖3.4 (a)不鏽鋼S310之夾具 (b)單氣室量測用之夾置具…………………32 圖3.5單氣室量測系統簡圖………………………………………………………33 圖3.6薄膜型微型氧氣感測器製作流程圖………………………………………35 圖3.7 CeO2-ZrO2 Disk 示意圖……………………………………………36 圖3.8 CeO2-ZrO2 Disk 製作流程圖………………………………………36 圖3.9 CeO2-ZrO2 Disk熱處理曲線………………………………………37 圖3.10 Pt-8YSZ白金氧化物先趨物還原熱處理曲線……………………39 圖4.1經1350°C,6小時退火熱處理的CeO2-ZrO2氧化物固溶體XRD繞射圖…42 圖4.2 Ce0.75Zr0.25O2氧化物固溶體JCPDS card…………………………………42 圖4.3 CeO2-ZrO2 Disk (a)表面 與(b)截面的SEM形貌…………………………43 圖4.4不同氧流量濺鍍下,8YSZ薄膜的XRD繞射圖…………………………45 圖 4.5立方晶(cubic)8YSZ之 JCPDS card………………………………………45 圖 4.6不同氧氣流量下濺鍍8YSZ薄膜時,RF bias 的改變……………………46 圖 4.7不同氧氣流量下濺鍍8YSZ薄膜時,RF bias 的改變(a) O2:0.3 sccm (b) O2:035 sccm (c) O2:0.4 sccm(d) O2:0.45 sccm (e) O2:0.5 sccm (f) O2:0.55 sccm…………………………………………………………………………………47 圖4.8不同氧流量濺鍍下,8YSZ薄膜在650°C退火後的XRD繞射圖………49 圖4.9 各氧流量下經650°C熱處理2小時後8YSZ薄膜表面形貌 (a) O2:0.3 sccm (b) O2:0.35 sccm (c) O2:0.4 sccm (d) O2:0.45 sccm (e) O2:0.5 sccm (f) O2:0.55 sccm…………………………………………………………………………………51 圖4.10剛濺鍍出的Pt-8YSZ薄膜的表面形態……………………………………54 圖4.11 Pt-8YSZ薄膜經600°C退火1小時後SEM表面形貌……………………55 圖4.12 Pt-8YSZ濺鍍1小時後,經600°C退火後膜厚與DC瓦數關係圖………56 圖4.13 低氧流量下(Ar:O2 = 22:0.3)沈積的Pt-8YSZ經600°C退火1小時後的SEM表面形貌……………………………………………………………………………58 圖4.14以Ar:O2 = 1:1下測鍍的Pt-8YSZ經600°C退火1小時後的SEM表面形貌……………………………………………………………………………58 圖4.15 Pt-8YSZ DC 7W濺鍍的白金氧化物先趨物與經350°C,500°C,600°C退火後的X-ray繞射圖………………………………………………………………61 圖4.16 Pt JCPDS card……………………………………………………………61 圖4.17 各瓦數下濺鍍的Pt-8YSZ薄膜 (a)退火前(b)600°C退火後之XRD繞射峰………………………………………………………………………………62 圖.4.18以DC 7 W濺鍍的Pt-8YSZ退火後的XRD繞射圖………………………63 圖.4.19 Pt-8YSZ/SiO2/Si 經600°C還原熱處理後SEM的表面形態……………66 圖.4.20 Pt-8YSZ經600°C還原熱處理後SEM的表面形態(a)真空下 (b)大氣下…67 圖.4.21 小型管狀加溫爐示意圖………………………………………………70 圖.4.22 600°C下量測的電壓與反應時間圖 (a)T90,up (b)T90,down…………………71 圖.4.23 600°C下反覆量測的電壓與反應時間圖(T90,down)…………………………72 圖.4.24 700°C下量測的電壓與反應時間圖 (a)T90,up (b)T90,down…………………73 圖.4.25 700°C下反覆量測的電壓與反應時間圖(T90,down)………………………74 圖.4.26 800°C下量測的電壓與反應時間圖 (a)T90,up (b)T90,down…………………75 圖.4.27 800°C下反覆量測的電壓與反應時間圖(T90,down)………………………76 圖.4.28 Ce0.75Zr0.25O2固溶體氧分壓對各溫度的對數關係圖……………………78 表索引 表2.1二種物理氣相沈積法之比較………………………………………………20 表3.1實驗藥品與材料規格…………………………………………………………26 表3.2實驗粉末規格…………………………………………………………………27 表3.3靶材規格………………………………………………………………………27 表3.4實驗裝置表……………………………………………………………………28 表3.5分析儀器裝置…………………………………………………………………33 表3.6先趨白金氧化物電極濺鍍參數………………………………………………38 表3.7 8YSZ電解質薄膜濺鍍參數…………………………………………………40 表4.1改變DC瓦數下的白金氧化先趨物電極濺鍍參數…………………………53 表4.2改變氬氧比的白金氧化先趨物電極濺鍍參數………………………………57 表4.3固定瓦數為7W下的白金氧化先趨物電極濺鍍參數………………………60 表4.4 Pt-8YSZ薄膜經600°C 後的EPMA………………………………………63 表4.5改變退火環境下的白金氧化先趨物電極濺鍍參數…………………………65 表4.6各溫度下量測的電壓值及其改變量ΔE……………………………………68 表4.7以指叉電極製備Pt-8YSZ電極之濺鍍參數…………………………………69 表4.8各溫度下量測的電壓值及其改變量ΔE……………………………………77 表4.9各溫度下量測的ΔE實驗值與理論值之比較………………………………78 表4.10各層材料間的TEC…………………………………………………………79

參考文獻

1. R. J. Furness, “Intelligent Sensor Based Manufacturing: Applications, Needs, and Future Directions”, Porceedings of the Japan/USA Symposium on Flexible Automation 2, 1055(1996).
2. N. T. Nguyen, “Micromachined Flow Sensors-A Review”, Flow Measurement and Instrumentation 8, 7 (1997).
3. M. M. O. Lee, “Merged Technology on MEMS”, Proceedings of the IEEEE Hong Kong Electron Device Meeting 1997, IEEE Piscataway, NJ USA, P.128.
4. 張玉清,宋隆裕,李英正,楊淑卿,陶惟翰, “微型氧氣感測器簡介”, 科儀新知, 第二十卷, 第五期, 第84-89頁, 民國88年4月
5. 黃炳照,”固態電解質電化學氧氣感測器”, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), Vol.59, No. 2, pp. 207~217 (2001).
6. W. C. Maskell, “Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors”, J. Phys. E. Sci. Instrum., 20, 1156(1987).
7. T. Takeuchi, “Oxygen sensors”, Sens. Actuators, 14, 109(1998).
8. S. Matsumoto, H. Miura, K. Uchida, Y. Otsuka, “Oxygen sensor and manufacturing method thereof”, US Patent 4,096,048 (1978).
9. T.M. Gur, R.A. Huggins, “Oxygen sensor”, US Patent 5,827,415 (1998).
10. H. Kaneko, T. okamura, H. Taimatsu, “Characterization of zirconia oxygen sensors with a molten internal referece for low-temperature operation”, Sens. Actuators B 93, 205-208 (2003).
11. J. W. Bae, J. Y. Park, S. W. Hwang, G. Y. Yeom, K. D. Kim, Y. A. Cho, J. S. Jeon, and D. Choi, “Characterization of Yttria-Stabilized Zirconia Thin Film Prepared by Radio Frequency Magnetron Sputtering for a Combustion Control Oxygen Sensor”, J. Electrochem. Soc., 147(6) 2380-2384 (2000).
12. N. Rajabbeigi, B. Elyassi, A. Khodadadi, S. S. Mohajerzadeh, M. Sahimi, “A novel miniaturized oxygen sensor with solid-state ceria-zirconia reference”, Sens. Actuators B, 100, 139-142, (2004).
13. B. Elyassi, N. Rajabbeigi, A. Khodadadi, S. S. Mohajerzadeh, M. Sahimi, “An yttria-doped ceria-based oxygen sensor with solid-state reference”, Sens. Actuators B, 100, 178-183 (2004).
14. N. Rajabbeigi, B. Elyassi, A. Khodadadi, S. S. Mohajerzadeh, Y. Mortazavi, M. Sahimi, “Oxygen sensor with solid-state CeO2-ZrO2-TiO2 reference”, Sens Actuators B, 108, 341-345 (2005).
15. N.M. Sammes, Z. Cai, “Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials”, Solid State Ionics, 100, 39-44 (1997).
16. C.E. Hori, Permana, K.Y. Simon Ng, A. Brenner, K. More, K.M. Rahmoeller, D. Belton, “Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system”, Appl. Catal. B: Environ. 16, 105-117 (1998).
17. D. Yuan and F. A. Kroger, “Stabilized Zirconia as an Oxygen Pump”, J. Electrochem. Soc., 116, 5, 594 (1969).
18. Ron Steven “Textbook on Zriconia” Magnesium Elektron;2nd , p38 (1983)
19. N. Bonanos, R. K. Soltwinski, B. C. H. steele, and E. P. Butler “High ionic conductivity in polycrystalline tetragonal Y2O3-ZrO2”, J. Mat. Sci. Lett., 3, p245(1984)
20. E. P. Butler, R. K. Soltwinski, N. Bonanos, J. Drennan and B. H. steele, “Microstructural-Electrical Property Relationship n High-Conductivity Zirconias”, in Advance in Ceramics, Vol. 12, Science and Technology of Zirconia II (N. Claussen, M. Ruhle and A. H. Heuer, eds.),p.572, The American Ceramic Society, Inc., Columbus, Ohio, USA(1983).
21. A. H. Heuer and L. W. Hobbs, Science and Technology of Zirconia, Vol.3, p.216, American Ceramic Society, Columbus, Ohio(1981).
22. E. C. Subbarao and H. S. Maiti, “Solid Electrolytes With Oxygen Ion Conduction”, Solid State Ionics, 11, 317(1984).
23. B. C. H. Steele, J. Drennan, R. K. Slotwinski, N. Bonanps and E. P. Butler, “Factors Influencing The Performance of Zirconia-Based Oxygen Monitors”, in Advances in Ceramics, Vol.3, Science and Technology of Zirconia (A. H. Heuer and L. W. Hobbs, eds.), p.286, The American Ceramic Society, Inc., Columbus, Ohio, U.S.A (1980).
24. K. Kinoshita in Electrochemical Oxygen Technology, (John Wiley & Sons, Inc., New York, U.S.A., 1992) Chapter 7, Industrial Electrochemistry, p.37.
25. 紀廷瑋,“以反應式濺鍍製備安定性氧化鋯(3YSZ)薄膜之研究”,台灣科技大學工程所材料學程碩士論文,民國91年,12月。
26. T. Inoue, N. Seki, K. Eguchi and H. Arai, “Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type electrodes”, J. Electrochem. Soc. 137, 2523(1990).
27. S. P. S. Badwal, F. T. Ciacchi, “Microstructure of Pt Electrodes and its Influence on the Oxygen Transfer Kinetics”, Solid State Ionics, vol.18/19, p.1054 (1986).
28. S. P. S. Badwal, F. T. Ciacchi and J. W. Haylock, “Nernstian Behavior of Zirconia Oxygen Sensors Incorporating Composite Electrodes”, J. Appl. Electrochem. 18, 232(1988).
29. S. Kim, Y. L. Yang, A. J. Jacobson and B. Abeles, “Diffusion and Surface Exchange Coefficients in Mixed Ionic Electronic Conducting Oxides From the Pressure Dependence of Oxygen Permeation”, Solid State Ionics 106, 189(1998).
30. T. H. Etsell and S. N. Flengas, “Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells”, J. Electrochem. Soc. 118, p.1890 (1971).
31. N. L. Robertson and J. N. Michaels, “Oxygen Exchange on Platinum Electrodes in Zirconia Cells: Location of Electrochemical Reaction Sites”, J. Electrochem. Soc. 137, 129(1990).
32. 莊眭賢,”氧化鋯型固態電解質氧氣感測器之研發”, 台灣科技大學, 化學工程研究所, 碩士論文(1990)
33. J. R. McBride, G. W. Graham, C. R. Peters and W. H. Weber, “Growth and Characterization of Reactively Sputtered Thin-Film Platinm Oxides”, J. Appl. Phys. 69, 1596(1991).
34. 許凱超,“以反應式濺鍍及還原反應製備多孔性薄膜電極”,台灣科技大學工程所材料學程碩士論文,民國90年,7月。
35. J. Chapin, U.S. Patent No.438482,1974;S. Schiller, “Use of the ring gap plasmatron for high rate sputtering”, Thin Solid Films, 40, 327(1997).
36. J.R. Hollahan and W.Kern (Eds), Thin Film Process, Academic Press, New York , 1978.
37. W. D. Westwood, “Reactive Sputter Deposition, Handbook of Plasma Processing Technology”, Springer-Verlag Berlin Heidelberg, U.S.A., Chap 9, (1992).
38. 羅吉宗編,「第二章 電漿物理」,薄膜科技與應用,台北,全華科技,民國94年。
39. 柯賢文編,「第五章 濺鍍鍍膜」,表面與薄膜處理技術,台北,全華科技,民國94年。
40. W.D. Kingery, H.K. Bowen and D.R. Uhlmann,Introduction to Ceramics Second Edition , John Wiley & Sons, Inc., New York,(1976)
41. S. Huang, L. Li, O. Van der Biest, J. Vleugels, “Influence of the oxygen partial pressure on the reduction of CeO2 and CeO2-ZrO2 ceramics”, Solid State Sciences, 7, 539-544(2005).

QR CODE