簡易檢索 / 詳目顯示

研究生: 郭維倫
Wei-lun Kuo
論文名稱: 不同形貌二氧化鈰粉體應用於氧氣感測器性質之研究
A study on cerium oxide powders with various morphologies applied in oxygen gas sensors
指導教授: 施劭儒
Shao-ju Shih
口試委員: 陳錦毅
Chin-yi Chen
段維新
none
顏怡文
Yen-yee Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 132
中文關鍵詞: 二氧化鈰應答時間靈敏度形貌噴霧熱解法比表面積
外文關鍵詞: ceria, response time, sensitivity, morphology, spray pyrolysis, surface area
相關次數: 點閱:348下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈰基粉體應用於汽車排放系統之氧氣感測器中具有應答時間快、靈敏度高之特性,因此受到廣泛的研究和討論;應答時間由二氧化鈰粉體之比表面積,結晶尺寸所控制,靈敏度則會受到粉體之價數比例(Ce(III)/(Ce(IV))的影響,這些因素與顆粒之形貌有關,因此對於氧氣感測器材料的應用,CeO2形貌的操控是必須且重要的;然而,到目前為止,很少文獻討論不同形貌之二氧化鈰粉體和應答時間、靈敏度之間的關聯性,因此,本研究利用噴霧熱解法製備實心、大孔、鑲嵌、及介孔狀之二氧化鈰粉體,經網印在印有白金電極之氧化鋁基板後,透過500oC、2h將膠體去除並用1200oC、2 h燒結緻密化後形成厚度約5-11 μm的厚膜,量測其應答時間和靈敏度;並以穿透式電子顯微鏡、比表面積分析儀、X光繞射儀、及X射線光電子能譜儀分析二氧化鈰粉體之形貌、比表面積、結晶尺寸、及價數比例。實驗結果顯示,介孔狀之二氧化鈰粉體比表面積最高、結晶尺寸小,則應答時間縮短;而粉體中隨著Ce(III)的比例增加,提升了氧氣感測器之靈敏度。
    以SP製程合成鋯摻雜之介孔狀CeO2粉體(Zr-doped ceria, ZDC): 10ZDC、20ZDC、30ZDC、50ZDC(10、20、30、50 mole% Zr doped ceria),經網印在印有白金電極之氧化鋁基板後,探討不同鋯摻雜量對氧分壓感測行為之影響。實驗結果顯示,摻雜鋯會縮短晶格常數,電子移動的距離變短,電阻下降,其中以30ZDC之氧氣感測性質最佳,其具有較低的晶格常數及結晶尺寸,在不同氧分壓下之電阻低,且應答時間最短。


    Ceria-based materials have been extensively investigated as oxygen gas sensor in automotive exhaust systems due to their excellent properties of fast response time and superior sensitivity. Since the response time and sensitivity are influenced by the ceria parameters of surface area, crystalline size and cerium valence ratio (Ce(III)/(Ce(IV)), these parameters correlate with their particle morphologies.Therefore, manipulation of particle morphology is urgent and important for application in oxygen gas sensors. However, so far, the studies of varying morphologies to investigate response time and sensitivity for the oxygen gas sensors are scarce. So, the morphologies of mesoporous, porous, core-shell and solid spherical ceria powders were prepared by spray pyrolysis, and screen printed on the alumina substrates with platinum wires. The formation of thick films with 5-11μm thickness undergoes the gel decomposition at 500oC for 5h and sintering at 1200oC for 2h, and measured the properties of response time and sensitivity. The morphology, surface area, crystalline size, and cerium valence ratio were characterized by transmission electron microscopy, BET (Brunauer–Emmer–Teller) method, X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The experimental results suggest that higher surface area and smaller crystalline size shorten response time, and higher Ce(III) concentration enhances the sensitivity of oxygen gas sensor.
    Mesoporous Zr-doped ceria powders were prepared by spray pyrolysis(10ZDC、20ZDC、30ZDC、50ZDC, 10、20、30、50 mole% Zr doped ceria). And, the resistive oxygen gas sensors based on thick film made from this powder were fabricated. The response time of the thick film were investigated. The experimental results suggest that the lattice constant decrease with increasing ZrO2 concentration. Therefore, the electron hopping distance decrease, and the resistance of thick film decrease. The 30ZDC thick film had a lower latiice constant and crystallite size. Hence, it had lower resistance and a shorter response time. The results showed that 30ZDC thick film exhibited superior oxygen sensing properties.

    目錄 摘要........................................................................I Abstract.................................................................III 目錄......................................................................V 圖目錄.............................................................X 表目錄.........................................................XVI 第一章、緒論...................................................1 第二章、文獻回顧..........................................3 2.1 CeO2之性質及應用...................................3 2.1.1 CeO2之物理性質..............................3 2.1.2 化學缺陷性質...............................4 2.1.3 CeO2之應用...................................5 2.1.3.1 紫外光吸收材料...............................6 2.1.3.2 化學機械研磨(CMP).........................7 2.1.3.3 氣體轉換觸媒..............................8 2.1.3.4 固態氧化物燃料電池(SOFC)之電解質.................9 2.1.3.5 氧氣感測器..............................10 2.2 CeO2的製備方法................................10 2.2.1 化學法...................................11 2.3 噴霧裂解法(Spray Pyrolysis).......................13 2.3.1 顆粒成型機制..............................15 2.3.2 靜電沉積技術............................16 2.4 多孔二氧化鈰粉體的製備..........................18 2.5 氧氣感測器.......................................20 2.5.1 電位式氧氣感測器..........................21 2.5.2 極限電流式氧氣感測器........................22 2.5.3 電阻式氧氣感測器..........................24 2.6 電阻式氧氣感測器之機制...........................27 2.6.1 二氧化鈰之感測性質..........................27 2.6.2 影響應答時間之機制.........................28 2.7 鋯離子摻雜二氧化鈰之特性.........................32 第三章、實驗步驟...........................................35 3.1 實驗設計與目的....................................35 3.2 電阻式氧氣感測元件製備.........................39 3.2.1 粉體之製備................................39 3.2.2 網印成膜...............................41 3.3 粉體特性分析.................................42 3.3.1 熱重分析.................................42 3.3.2 X光繞射分析.............................42 3.3.3 場發射掃描式電子顯微鏡表面形貌分析..................43 3.3.4 穿透式電子顯微鏡粉體結構分析...............................44 3.3.5 比表面積量測...........................44 3.3.6 X射線光電子能譜儀分析............................................45 3.4 氧氣感測之特性量測..............................45 3.4.1 不同氧分壓下電阻之量測.....................46 3.4.2 應答時間之量測...........................46 3.4.3 靈敏度.......................................46 第四章、結果與討論.....................................48 4.1 前驅物特性分析..............................48 4.1.1 前驅物之熱重分析...........................48 4.1.2 前驅物溶解度.............................52 4.2 CeO2粉體性質分析...........................53 4.2.1 XRD結晶相分析............................53 4.2.2 CeO2粉體FESEM表面形貌分析................................55 4.2.3 CeO2粉體TEM結構分析............................................56 4.2.4 CeO2粉體粒徑分布及形貌分析...................................58 4.2.5 CeO2粉體成型機制.......................................................59 4.2.6 BET比表面積分析..........................................................63 4.2.7 XPS分析............................................64 4.3 CeAN實心球狀粉體經網印成膜熱處理1200、1600°C之特性 分析...........68 4.3.1 XRD結晶相分析.......................68 4.3.2 厚膜表面形貌FESEM分析...........................................70 4.3.3 厚膜熱處理1200,1600°C之氧氣感測電性分析.........76 4.3.4 CeAN厚膜熱處理1200°C之應答時間.........................79 4.4 不同形貌之CeO2厚膜熱處理1200°C之特性分析..............81 4.4.1 XRD結晶相分析...............................82 4.4.2 CeO2厚膜表面形貌FESEM分析..................................84 4.4.3 CeO2厚膜熱處理1200°C之氧氣感測電性分析.........87 4.4.4 不同形貌CeO2厚膜之靈敏度.......................90 4.4.5 不同形貌CeO2厚膜之應答時間..................92 4.5 鋯摻雜二氧化鈰粉體性質分析.........................95 4.5.1 XRD結晶相分析...........................95 4.5.2 TEM結構分析................................98 4.5.3 BET比表面積分析.............................99 4.5.4 XPS分析................................100 4.6 各成分鋯摻雜二氧化鈰厚膜熱處理1200°C之特性分析..105 4.6.1 XRD結晶相分析..........................105 4.6.2 厚膜表面形貌FESEM分析.........................................108 4.6.3 厚膜熱處理1200°C之氧氣感測電性分析.................111 4.6.4 各成分鋯摻雜二氧化鈰厚膜之靈敏度........................116 4.6.5 各成分鋯摻雜二氧化鈰厚膜之應答時間....................118 第五章、結論..................................................122 參考文獻.................................................124   圖目錄 圖2-1 CeO2螢石結構 3 圖2-2 不同樣品尺寸之吸收光譜(a) CeO2薄膜(b)奈米結構CeO2:Tb3+薄膜[15] 6 圖2-3 化學機械研磨(chemical mechanical polishing, CMP)之操作示意圖 [19] 7 圖2-4 CeO2三元觸媒換器應用於汽車排放系統 8 圖2-5 板狀結構SOFC[23] 9 圖2-6 電阻式氧氣感測器結構[24] 10 圖2-7 噴霧裂解設備示意圖 14 圖2-8 顆粒製備流程圖[29] 15 圖2-9 顆粒形成機制(a)Gas-to-Particle Conversion和(b)One-Particle-per-Drop (after[32]) 16 圖2-10 靜電沉積裝置示意圖[34] 17 圖2-11 電位式氧氣感測器之工作原理圖[43] 21 圖2-12 極限電流式氧氣感測器之工作原理圖[44] 23 圖2-13 (a)極限電流對應操作電壓及(b) 極限電流對應氧分壓濃度之曲線圖[44] 23 圖2- 14 極限電流式氧氣感測器其電流對應各比例A/F之曲線圖[45] 24 圖2-15 電阻式氧氣感測器之結構圖[47] 25 圖2-16 TiO2電阻式氧氣感測器在不同溫度、氧分壓下之電阻圖[45] 25 圖2-17 CeO2厚膜在(a)850°C、(b)800°C下之應答時間[51]。 30 圖2-18 顆粒尺寸為100、200nm之CeO2粉體經不同溫度厚膜熱處理後之應答時間曲線[49]。 31 圖2-19 CeO2摻雜低價陽離子在不同氧分壓下之導電率(○)代表(CeO2)0.8(SmO1.5)0.2,(△)代表(CeO2)0.8(GdO1.5)0.2 [56] 33 圖2-20 各成分(0-20mol%)鋯摻雜二氧化鈰厚膜經1100°C空氣下熱處理2h後,在600°C、800°C不同氧分壓下量測之電阻變化[52] 34 圖2-21鋯摻雜二氧化鈰粉體經900°C空氣下熱處理4h之crystallite size[52] 34 圖3-1 第一部分實驗流程圖。 36 圖3-2 第二部分實驗流程圖。 37 圖3-3 第三部分實驗流程圖。 38 圖3-4網印成膜之示意圖 41 圖3-5不同氧分壓下電阻量測之示意圖 47 圖4-1 前驅物之熱重分析圖(a)硝酸鈰銨(CeAN)、(b)硝酸鈰(CeN)、(c)硝酸鋯(ZrN) 50 圖4-2 添加物glycine、F127之熱重分析圖 51 圖4-3 先驅物CeAN、CeN對水的溶解度與溫度之關係圖 52 圖4-4 不同形貌之CeO2粉體XRD繞射圖 54 圖4-5以噴霧熱解法利用先驅物(a)CeAN、(b)(CeAN)25(GN)75、 (c)(CeAN)50(CeN)50、(d)(CeAN)96(F127)4製備CeO2粉末之FESEM表面形貌 55 圖4-6 以噴霧熱解法利用不同先驅物(a)CeAN、(b) (CeAN)25GN75、(c)(CeAN)50CeN50、(d)(CeAN)96(F127)4製備CeO2粉體之TEM表面形貌影像 57 圖4-7 以噴霧熱解法利用不同先驅物(a)CeAN、(b)(CeAN)25(GN)75、(c) (CeAN)50(CeN)50(d)(CeAN)96(F127)4製備CeO2粉末之粒徑分布圖 58 圖4-8 以不同前驅物混和之粉體形貌成型機制 60 圖4-9 以前驅物CeAN和soft template glycine混和之粉體形貌成型機制 61 圖4-10 以前驅物CeAN和soft template F127混和之粉體形貌成型機制 62 圖4-11 以噴霧熱解法利用不同先驅物(a)CeAN、(b)(CeAN)25(GN)75、(c)(CeAN)50(CeN)50、(d)(CeAN)96(F127)4製備CeO2粉末之Ce-3d 能譜圖 65 圖4-12 前驅物CeAN所製備之CeO2粉體以不同固含量混和膠體網印成膜後,厚膜經1200、1600°C空氣下熱處理2h之crystallite size 69 圖4-13 不同固含量之CeAN-實心球狀粉體網印於基板,經1200°C空氣下熱處理2h之FESEM表面形貌影像(a)40、 (b) 60、(c)80 wt% 71 圖4- 14 不同固含量之CeAN-實心球狀粉體網印於基板,經1200°C空氣下熱處理2h之FESEM cross-section厚膜結構(a)40、(b) 60、(c)80 wt% 72 圖4-15 不同固含量之CeAN-實心球狀粉體網印於基板,經1600°C空氣下熱處理2h之FESEM表面形貌影像(a)40、 (b) 60、(c)80wt% 74 圖4-16 不同固含量之CeAN-實心球狀粉體網印於基板,經1600°C空氣下熱處理2h之FESEM cross-section厚膜結構(a)40、 (b) 60、(c)80wt% 75 圖4-17 不同固含量的CeAN厚膜熱處理(a)1200°C、(b) 1600°C於850°C下量測之氧分壓-電阻圖 78 圖4-18 不同固含量(a)40、(b)60、及(c)80wt%的CeAN厚膜,經1200°C空氣下熱處理2h後於850°C下量測之應答時間 80 圖4-19 以不同形貌的CeO2粉末所製備之厚膜經1200°C空氣下熱處理2h之XRD繞射圖 83 圖4-20 以不同前驅物(a)CeAN、(b)(CeAN)25(GN)75、(c)(CeAN)50(CeN)50 及(d)(CeAN)96(F127)4製備之CeO2粉體網印於基板,厚膜經1200°C空氣下熱處理2h之FESEM表面形貌影像 85 圖4-21 以不同前驅物(a) CeAN、(b)(CeAN)25(GN)75、(c)(CeAN)50(CeN)50 及(d)(CeAN)96(F127)4製備之CeO2粉體網印於基板,厚膜經1200°C空氣下熱處理2h之FESEM cross-section厚膜結構 86 圖4-22 以不同前驅物(a) CeAN、(b)(CeAN)25(GN)75、(c)(CeAN)50CeN50、及 (d)(CeAN)96(F127)4製備之CeO2粉體網印於基板,厚膜經1200°C空氣下熱處理2h後於各溫度下量測之氧分壓-電阻圖 88 圖4-23 不同形貌之CeO2厚膜經1200°C空氣下熱處理2h後於各溫度下 91 圖4-24 以不同前驅物(a)CeAN、(b)(CeAN)25(GN)75、(c)(CeAN)50CeN50及(d)(CeAN)96(F127)4製備之CeO2粉體網印於基板,厚膜經1200°C空氣下熱處理2h後於850°C下量測之應答時間 93 圖4-25 各成分鋯摻雜二氧化鈰粉體之XRD繞射圖 97 圖4-26 以噴霧熱解法製備鋯摻雜二氧化鈰粉體(a)(CeAN)96(F127)4、(b)10ZDC、(c) 20ZDC、(d)30ZDC及(e)50ZDC之TEM表面形貌影像 98 圖4-27以噴霧熱解法製備鋯摻雜二氧化鈰粉體(a)(CeAN)96(F127)4、(b)10ZDC、(c) 20ZDC、(d)30ZDC及(e)50ZDC之Ce-3d 能譜圖 101 圖4-28 各成分鋯摻雜二氧化鈰厚膜經1200°C空氣下熱處理2h之XRD繞射圖 106 圖4-29 以噴霧熱解法製備鋯摻雜二氧化鈰粉體(a)(CeAN)96(F127)4、(b)10ZDC、(c)20ZDC、(d)30ZDC及(e)50ZDC網印於基板,厚膜經而空氣下熱處理2 h之FESEM表面形貌影像 109 圖4-30 以噴霧熱解法製備鋯摻雜二氧化鈰粉體(a)(CeAN)96(F127)4、(b)10ZDC、(c) 20ZDC、(d)30ZDC及(e)50ZDC網印於基板,厚膜經1200°C空氣下熱處理2h之FESEM cross-section厚膜結構 110 圖4-31 以噴霧熱解法製備鋯摻雜二氧化鈰粉體(a)(CeAN)96(F127)4、 (b)10ZDC、(c)20ZDC、(d)30ZDC及(e)50ZDC網印於基板,經1200°C空氣下熱處理2h後於各溫度下量測之氧分壓-電阻圖 113 圖4-32 各成分鋯摻雜二氧化鈰厚膜經1200°C空氣下熱處理2h後,於850°C下量測之氧分壓-電阻圖 115 圖4-33 各成分鋯摻雜二氧化鈰厚膜於各溫度下之靈敏度 117 圖4-34 以噴霧熱解法製備鋯摻雜二氧化鈰粉體(a)(CeAN)96(F127)4、(b)10ZDC、(c) 20ZDC、(d)30ZDC及(e)50ZDC網印於基板,經1200°C空氣下熱處理2h後於850°C下量測之應答時間 119   表目錄 表2-1 二氧化鈰物理性質[4] 4 表2-2 不同製備CeO2製程之優缺點比較[26-30]。 13 表2-3 以不同製程所製備之多孔二氧化鈰粉體 19 表2-4 各種氧氣感測器之優、缺點比較 26 表2-5 擴散與反應控制[49]。 30 表2-6 CeO2粉體經不同溫度厚膜熱處理後之結晶大小[49] 31 表4-1 不同形貌CeO2粉體之crystallite size 54 表4-2 不同形貌CeO2粉體之比表面積值 63 表4-3 以不同先驅物所製備CeO2粉末之XPS參數及Ce(III)之百分比 67 表4-4 不同固含量之CeAN-實心球狀粉體網印於基板,經1200°C空氣下熱處理2h之膜厚 72 表4-5 不同固含量之CeAN-實心球狀粉體網印於基板,經1600°C空氣下熱處理2h之膜厚 75 表4-6 以不同形貌的CeO2粉末所製備之厚膜經1200°C空氣下熱處理2h之crystallite size 83 表4-7 不同形貌之CeO2粉體網印於基板,經1200°C熱處理之膜厚 86 表4-8 不同形貌的CeO2厚膜於各溫度下之靈敏度和Ce(III)%之比較 91 表4-9 各成分鋯摻雜二氧化鈰粉體之crystallite size 97 表4-10 各成分鋯摻雜二氧化鈰粉體之比表面積 99 表4-11 以噴霧熱解法製備鋯摻雜二氧化鈰粉體之XPS參數及Ce(III)之百分比 104 表4-12 各成分鋯摻雜二氧化鈰厚膜經1200°C空氣下熱處理2h之crystallite size 107 表4-13 各成分鋯摻雜二氧化鈰厚膜經1200°C空氣下熱處理2h之lattice constant 107 表4-14 各成分鋯摻雜二氧化鈰厚膜經1200°C空氣下熱處理2h之膜厚 111 表4-15 各成分鋯摻雜二氧化鈰於各溫度下之靈敏度和Ce(III)%之比較 117 表4-16 各成分鋯摻雜二氧化鈰厚膜之crystallite size以及850°C下量測之應答時間 121

    參考文獻
    [1] N. Docquier, S. Candel, Combustion control and sensors: a review, Progress in Energy and Combustion Science 28 (2) (2002) 107-150.
    [2] C. Peng, Y. Wang, K. Jiang, B.Q. Bin, H.W. Liang, J. Feng, J. Meng, Study on the structure change and oxygen vacation shift for Ce1-xSmxO2-y solid solution, Journal of Alloys and Compounds 349 (1-2) (2003) 273-278.
    [3] C. Ying-Yu, R. Schmid, Y.A. Chang, Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the FeCuNi system, Acta Metallurgica 33 (8) (1985) 1369-1380.
    [4] Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, M. Sugiura, X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr=1), Catalysis Today 74 (3–4) (2002) 225-234.
    [5] F. Dong, A. Suda, T. Tanabe, Y. Nagai, H. Sobukawa, H. Shinjoh, M. Sugiura, C. Descorme, D. Duprez, Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2–ZrO2, Catalysis Today 93–95 (0) (2004) 827-832.
    [6] N.M. Sammes, Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials, Solid State Ionics 100 (1–2) (1997) 39-44.
    [7] F. Millot, P.D. Mierry, A new method for the study of chemical diffusion in oxides with application to cerium oxide CeO2−x, Journal of Physics and Chemistry of Solids 46 (7) (1985) 797-801.
    [8] A. Kelly, K.M. Knowles, Front Matter, in: Crystallography and Crystal Defects, John Wiley & Sons, Ltd, 2012, pp. i-xiv.
    [9] H.-I. Chen, H.-Y. Chang, Synthesis of nanocrystalline cerium oxide particles by the precipitation method, Ceramics International 31 (6) (2005) 795-802.
    [10] Y. Chen, R. Long, Polishing behavior of PS/CeO2 hybrid microspheres with controlled shell thickness on silicon dioxide CMP, Applied Surface Science 257 (20) (2011) 8679-8685.
    [11] U. Hennings, R. Reimert, Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas, Applied Catalysis A: General 325 (1) (2007) 41-49.
    [12] M. Sugiura, Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions, Catalysis Surveys from Asia 7 (1) (2003) 77-87.
    [13] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1–2) (1996) 1-16.
    [14] H.J. Beie, A. Gnorich, Oxygen gas sensors based on CeO2 thick and thin films, Sensors and Actuators B: Chemical 4 (3–4) (1991) 393-399.
    [15] L. Yin, Y. Wang, G. Pang, Y. Koltypin, A. Gedanken, Sonochemical Synthesis of Cerium Oxide Nanoparticles—Effect of Additives and Quantum Size Effect, Journal of Colloid and Interface Science 246 (1) (2002) 78-84.
    [16] M.Y. Chen, X.T. Zu, X. Xiang, H.L. Zhang, Effects of ion irradiation and annealing on optical and structural properties of CeO2 films on sapphire, Physica B: Condensed Matter 389 (2) (2007) 263-268.
    [17] B. Yan, W. Zhao, Wet chemical synthesis of nanometer CeO2 with strong ultraviolet absorption property by in situ assembly of hybrid precursors, Materials Science and Engineering: B 110 (1) (2004) 23-26.
    [18] D.S. Lim, J.W. Ahn, H.S. Park, J.H. Shin, The effect of CeO2 abrasive size on dishing and step height reduction of silicon oxide film in STI–CMP, Surface and Coatings Technology 200 (5–6) (2005) 1751-1754.
    [19] B.J. Hooper, G. Byrne, S. Galligan, Pad conditioning in chemical mechanical polishing, Journal of Materials Processing Technology 123 (1) (2002) 107-113.
    [20] S. Damyanova, J.M.C. Bueno, Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts, Applied Catalysis A: General 253 (1) (2003) 135-150.
    [21] H.C. Yao, Y.F.Y. Yao, Ceria in automotive exhaust catalysts: I. Oxygen storage, Journal of Catalysis 86 (2) (1984) 254-265.
    [22] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, Electrolytes for Solid-Oxide Fuel Cells., MRS Bulletin 30 (2005) 591-595.
    [23] S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review, Ceramics International 22 (3) (1996) 257-265.
    [24] P. Jasinski, T. Suzuki, H.U. Anderson, Nanocrystalline undoped ceria oxygen sensor, Sensors and Actuators B: Chemical 95 (1–3) (2003) 73-77.
    [25] M. Hirano, T. Miwa, M. Inagaki, Effect of the Presence of Ammonium Peroxodisulfate on the Direct Precipitation of Ceria and Ceria–Zirconia Solid Solutions from Acidic Aqueous Solutions, Journal of the American Ceramic Society 84 (8) (2001) 1728-1732.
    [26] K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara, T. Adschiri, Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis, Nano Letters 7 (2) (2007) 421-425.
    [27] T. Masui, K. Fujiwara, K.-i. Machida, G.-y. Adachi, T. Sakata, H. Mori, Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles, Chemistry of Materials 9 (10) (1997) 2197-2204.
    [28] L.L. Hench, J.K. West, The sol-gel process, Chemical Reviews 90 (1) (1990) 33-72.
    [29] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, Journal of the American Ceramic Society 76 (11) (1993) 2707-2726.
    [30] S. Srivatsan, J.L. Keith, T.D. Reza, M.P. Paranthaman, Reverse micellar synthesis of cerium oxide nanoparticles, Nanotechnology 16 (9) (2005) 1960.
    [31] C.F. Clement, I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmospheric Environment 33 (3) (1999) 489-499.
    [32] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science 22, Supplement 1 (0) (1991) S7-S10.
    [33] C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, H.M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International 34 (2) (2008) 409-416.
    [34] H. Kato, T. Kudo, H. Naito, H. Yugami, Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC, Solid State Ionics 159 (3-4) (2003) 217-222.
    [35] H.F. Kraemer, H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields, Industrial & Engineering Chemistry 47 (12) (1955) 2426-2434.
    [36] S. Liu, P.K. Dasgupta, Automated System for Chemical Analysis of Airborne Particles Based on Corona-Free Electrostatic Collection, Analytical Chemistry 68 (20) (1996) 3638-3644.
    [37] C.Y. Cao, Z.M. Cui, C.Q. Chen, W.G. Song, W. Cai, Ceria Hollow Nanospheres Produced by a Template-Free Microwave-Assisted Hydrothermal Method for Heavy Metal Ion Removal and Catalysis, The Journal of Physical Chemistry C 114 (21) (2010) 9865-9870.
    [38] X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y. Li, Formation of CeO2−ZrO2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect, Journal of the American Chemical Society 130 (9) (2008) 2736-2737.
    [39] Z. Guo, F. Jian, F. Du, A simple method to controlled synthesis of CeO2 hollow microspheres, Scripta Materialia 61 (1) (2009) 48-51.
    [40] G. Xiao, S. Li, H. Li, L. Chen, Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation, Microporous and Mesoporous Materials 120 (3) (2009) 426-431.
    [41] S. Abdollahzadeh-Ghom, C. Zamani, T. Andreu, M. Epifani, J.R. Morante, Improvement of oxygen storage capacity using mesoporous ceria–zirconia solid solutions, Applied Catalysis B: Environmental 108–109 (0) (2011) 32-38.
    [42] Y. Chen, J. Lu, Facile fabrication of porous hollow CeO2 microspheres using polystyrene spheres as templates, J Porous Mater 19 (3) (2012) 289-294.
    [43] J. Riegel, H. Neumann, H.M. Wiedenmann, Exhaust gas sensors for automotive emission control, Solid State Ionics 152–153 (0) (2002) 783-800.
    [44] E. Ivers-Tiffee, K.H. Hardtl, W. Menesklou, J. Riegel, Principles of solid state oxygen sensors for lean combustion gas control, Electrochimica Acta 47 (5) (2001) 807-814.
    [45] R. Ramamoorthy, P.K. Dutta, S.A. Akbar, Oxygen sensors: Materials, methods, designs and applications, Journal of Materials Science 38 (21) (2003) 4271-4282.
    [46] N. Izu, W. Shin, I. Matsubara, N. Murayama, N. Oh-hori, M. Itou, Temperature independent resistive oxygen sensors using solid electrolyte zirconia as a new temperature compensating material, Sensors and Actuators B: Chemical 108 (1–2) (2005) 216-222.
    [47] T. Takeuchi, Oxygen sensors, Sensors and Actuators 14 (2) (1988) 109-124.
    [48] N. Izu, W. Shin, N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder, Sensors and Actuators B: Chemical 93 (1–3) (2003) 449-453.
    [49] N. Izu, W. Shin, I. Matsubara, N. Murayama, The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film, Sensors and Actuators B: Chemical 94 (2) (2003) 222-227.
    [50] I. Yasuda, K. Ogasawara, M. Hishinuma, Oxygen Tracer Diffusion in Polycrystalline Calcium-Doped Lanthanum Chromites, Journal of the American Ceramic Society 80 (12) (1997) 3009-3012.
    [51] C.Y. Chen, C.L. Liu, Doped ceria powders prepared by spray pyrolysis for gas sensing applications, Ceramics International 37 (7) (2011) 2353-2358.
    [52] N. Izu, N. Oh-hori, M. Itou, W. Shin, I. Matsubara, N. Murayama, Resistive oxygen gas sensors based on Ce1−xZrxO2 nano powder prepared using new precipitation method, Sensors and Actuators B: Chemical 108 (1–2) (2005) 238-243.
    [53] M. Adamowska, S. Muller, P. Da Costa, A. Krzton, P. Burg, Correlation between the surface properties and deNOx activity of ceria-zirconia catalysts, Applied Catalysis B: Environmental 74 (3–4) (2007) 278-289.
    [54] H.L. Tuller, A.S. Nowick, Small polaron electron transport in reduced CeO2 single crystals, Journal of Physics and Chemistry of Solids 38 (8) (1977) 859-867.
    [55] J.C. Yu, L. Zhang, J. Lin, Direct sonochemical preparation of high-surface-area nanoporous ceria and ceria–zirconia solid solutions, Journal of Colloid and Interface Science 260 (1) (2003) 240-243.
    [56] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics 52 (1–3) (1992) 165-172.
    [57] R.K. Lenka, T. Mahata, P.K. Sinha, A.K. Tyagi, Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels, Journal of Alloys and Compounds 466 (1–2) (2008) 326-329.
    [58] M. Vallet-Regi, F. Balas, M. Colilla, M. Manzano, Bone-regenerative bioceramic implants with drug and protein controlled delivery capability, Progress in Solid State Chemistry 36 (3) (2008) 163-191.
    [59] L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, M. Suenaga, Oxidation state and lattice expansion of CeO_{2-x} nanoparticles as a function of particle size, Physical Review B 69 (12) (2004) 125415.
    [60] A.Q. Wang, P. Punchaipetch, R.M. Wallace, T.D. Golden, X-ray photoelectron spectroscopy study of electrodeposited nanostructured CeO2 films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21 (3) (2003) 1169-1175.
    [61] P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc., Dalton Trans. (17) (1976) 1686-1698.
    [62] K. Mori, M. Ohashi, K. Osakada, Simulation of microscopic shrinkage behaviour in sintering of powder compact, International Journal of Mechanical Sciences 40 (10) (1998) 989-999.
    [63] F. Zhang, C.-H. Chen, J.C. Hanson, R.D. Robinson, I.P. Herman, S.-W. Chan, Phases in Ceria–Zirconia Binary Oxide (1−x)CeO2–xZrO2 Nanoparticles: The Effect of Particle Size, Journal of the American Ceramic Society 89 (3) (2006) 1028-1036.
    [64] F. Zhang, C.H. Chen, J.M. Raitano, J.C. Hanson, W.A. Caliebe, S. Khalid, S.-W. Chan, Phase stability in ceria-zirconia binary oxide nanoparticles: The effect of the Ce concentration and the redox environment, Journal of Applied Physics 99 (2006) 084313.

    QR CODE