簡易檢索 / 詳目顯示

研究生: 石峻宇
Chun-Yu Shih
論文名稱: 以氫化非晶氧化矽膜層作為矽晶異質接合太陽能電池鈍化層的效應探討
Synthesis of Silicon Heterojunction Solar Cells Using Hydrogenated Amorphous Silicon Oxide as Passivation Layers
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 李三良
none
葉秉慧
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 太陽能電池異質接合鈍化複合速率開路電壓短路電流
外文關鍵詞: a-Si:H/c-Si heterojuction, open circuit voltage, recombination velocity
相關次數: 點閱:597下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文乃以未來世代高效率矽晶太陽能電池的技術發展為議題,針對矽晶太陽能電池製作可能的矽晶異質接合,依據實驗室既有的以本質氫化非晶矽為鈍化層的矽晶異質接合太陽能電池η = 19.6 %、Voc = 690 mV、Jsc = 39.1 mA/cm2的技術水平,探討以氫化非晶氧化矽作為矽晶異質接合鈍化層的效應。將本質非晶矽層改為含有部分氧化矽的a-SiOx:H避免了本質層在矽晶界面結晶化的現象。藉由沉積雙面30 nm厚的a-SiOx:H薄膜鈍化n形單晶矽晶片後得到最佳晶片有效載子生命週期高達2610 μs,暗示開路電壓744 mV,表面載子複合速率5.4 cm/s。以此最佳化的條件製作本質層於矽晶異質接合太陽能電池的實驗,發現隨著a-SiOx:H薄膜厚度由8 nm下降為4 nm時,元件開路電壓略為下降到686 mV,但填充因子明顯上升到68.9 %,光電轉換效率達16.3 %。


Based on a technique status of Si heterojunction (SHJ) solar cell using hydrogenated amorphous silicon as the passivation layers, we extracted the key factors affecting the surface passivation properties of the SHJ. To avoid epitaxial growth of Si on Si wafer, hydrogenated amorphous silicon oxide (a-SiOx:H) has been applied to replace the intrinsic a-Si:H layer of the SHJ solar cells. Through passivating wafer surface by double-sided a-SiOx:H i-layers, a very high effective lifetime of 2610 μs(surface recombination velocity = 5.4 cm/s.) were established.
We found that fill-factor and current density increase dramatically as decreasing the passivation layer thickness of a-SiOx:H. Cell open circuit voltage of 686 mV, fill factor of 68.9 % and cell efficiency of 16.3 % were achieved when the passivation layer thickness is 4 nm.

摘要I AbstractII 誌謝III 目錄V 圖索引IX 第一章 緒論1 1.1 前言1 1.2非晶/單晶-異質接合太陽能電池4 1.3非晶矽薄膜的性質與成長機制13 1.4 載子生命週期16 1.4.1產生與復合16 1.4.2塊材復合19 1.4.3表面復合21 1.5 研究動機與目的31 第二章 實驗方法與步驟32 2.1 實驗裝置32 2.1.1 使用rf-PECVD系統成長本質層、p型及n型非晶矽薄膜32 2.1.2 使用磁控濺鍍系統成長透明導電玻璃薄膜37 2.2 實驗程序39 2.2.1 矽晶基材之清洗39 2.2.2 玻璃基材的清洗41 2.2.3 異質接合太陽能電池之製作程序42 2.3 分析儀器43 2.3.1 橢圓偏光儀 (Ellipsometer)43 2.3.2 反射式高能電子繞射 (Reflection high energy electron diffraction, RHEED)44 2.3.3 紫外光/可見光光譜儀 (UV/VIS)46 2.3.4 場發射掃瞄式電子顯微鏡 (Field emission scanning electron microscope, FE-SEM)49 2.3.5 X射線光電子能譜化學分析儀 (X-ray photoelectron spectroscopy)50 2.3.6 載子生命週期量測儀 (Lifetime tester)51 2.3.7 太陽光模擬器 (Solar simulator)55 2.3.8 穿透式電子顯微鏡 (Transmission electron microscope, TEM)58 2.3.8 電壓電流量測系統 (IV)60 2.3.8 霍爾量測儀 (Hall measurement)61 第三章 結果與討論64 3.1 本質氫化非晶氧化矽(a-SiOx:H)薄膜製備64 3.1.1 氧源流量比對沉積本質氫化非晶氧化矽薄膜的效應65 3.1.2 不同基材溫度下沉積氫化非晶氧化矽薄膜68 3.1.3 氫氣流量比對沉積本質氫化非晶氧化矽薄膜的效應70 3.1.4 氫化非晶氧化矽膜層厚度對矽晶片有效載子生命週期的效應72 3.1.5 本質氫化非晶氧化矽薄膜與本質氫化非晶矽薄膜在晶片鈍化效果的比較75 3.2 異質接合太陽能電池製作78 3.2.1 不同氫化非晶氧化矽沉積厚度應用於異質太陽能電池80 第四章 結論84 第五章 參考文獻85

1.KRI Report No. 8: Solar Cells, February 2005.
2.Delfina Munoz, Thibaut Desrues, and Pierre-Jean Ribeyron, “a-Si:H/c-Si Heterojunction Solar Cells”, Physics & Tech. of Amorphous-Crystalline, EM, pp. 539–572.
3.Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (version 39)”, Prog. Photovolt: Res. Appl. 2012; 20:12–20.
4.H. C. Neitzert, W. R. Fahrner, “History of the amorphous silicon on crystalline silicon heterojunction solar cell”, Rev. Roumaine Phys. 13, 317 (1968).
5.T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, “Development status of high-efficiency HIT solar cells”, Solar Energy Materials & Solar Cells 95 (2011) 18–21.
6.Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials & Solar Cells 93 (2009) 670–673.
7.E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, (2009) 1690.
8.Panasonic Co., “Panasonic HIT Solar Cell Achieves World`s Highest Conversion Efficiency of 24.7% Research Level”, February 12, 2013.
9.S. D. Wolf, A. Descoeudres, Z. C. Holman, C. Ballif, “High-efficiency Silicon Heterojunction Solar Cells: A Review”, Green, Vol. 2 (2012) 7–24.
10.C. V. Sanchez, “Silicon heterojunction solar cells obtained by Hot-Wire CVD”, Ph.D. Thesis, University Politecnica de Catalunya (2008).
11.T.H. Wang, M.R. Page, E. Iwaniczko, D.H. Levi, Y. Yan, H.M. Branz, Q. Wang, “Toward Better Understanding and Improved Performance of Silicon Heterojunction Solar Cells” ,14th Workshop on Crystalline Silicon Solar Cells and Modules, Winter Park, Colorado (2004).
12.L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt, “Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization”, Solar Energy Materials & Solar Cells 93 (2009) 905–910.
13.M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogentated amorphous silicon and germanium”, Phys. Rev. B, Vol.35, pp.5666-5701 (1987).
14.M. H. Cohen, H. Fritzsche and S. R. Ovshinsky, “Simple band model for amorphous semiconducting Alloys”, Phys. Rev. Lett., Vol.22, pp.1065-1068 (1969).
15.D. E. Carson & C. R. Wronski, “Amorphous silicon Solar Cells”, Pennsylvania State University, USA (2007).
16.D. L. Meier, M. R. Page, E. Iwaniczko, Y. Xu, Q. Wang, H. M. Branz, “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
17.P. J. Rostan, “a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base”, Institut f‥ur Physikalische Elektronik der Universit‥at Stuttgart 2010.
18.A. G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells:A Review”, Prog. Photovolt: Res. Appl. 2000; 8: 473-487
19.Nelson. J., “The Physic of solar cell, Imperial College Press”.
20.S. Y. Lien, D. S. Wuu, “Simulation and Fabrication of Heterojunction Silicon Solar Cells from Numerical Computer and Hot-Wire CVD”, Prog. Photovolt: Res. Appl.(2009).
21.L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt, “Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization”, Solar Energy Materials & Solar Cells 93 (2009) 905–910.
22.Y. Yamamoto, Y. Uraoka, T. Fuyuki, “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single-Crystalline Silicon Thin-Film Solar Cells”, Jpn. J. Appl. Phys., Vol. 42 (2003) pp. 5135–5139.
23.J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee , A. Yamada, M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46, No. 6A, 2007, pp. 3296–3300.
24.M.R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, H. M. Branz, T.H. Wang, “Well passivation a-Si:H back contacts for double-heterojunction silicon solar cell”, Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 1485 (2006).
25.“CompleteEASE Manual”, http://www.jawoollam.com/
26.J. C. Vickerman, “Surface Analysis—The Principle Techniques”, Wiley: New York, (1997) pp.60.
27.Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, “Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Japanese Journal of Applied Physics, Vol. 30, No. 5,May, 1991, pp. 1008–1014.
28.Sinton Consulting, “WCT-120 Photoconductance Lifetime Tester and optional Suns-Voc Stage User Manual”, www.sintonconsulting.com
29.R. A. Sinton, A. Cuevas, “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Appl. Phys. Lett., Vol. 69, No. 17, 21 October 1996.
30.D. Macdonald, R. A. Sinton, A. Cuevas, “On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon”, Journal of Applied Physics, volume 89, No. 5, 1 MARCH 2001.
31.施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市 (2002).
32.H. Fujiwara, T. Kaneko, M. Kondo, “Application of hydrogenated amorphous silicon oxide layers to c–Si heterojunction solar cells”, Applied Physics Letters 91,133508 2007.
33.L. Fesquet, S. Olibet, E. V. Sauvain, A. Shah, C. Ballif, “High Quality Surface Passivation and Heterojunction Fabrication by VHF-PECVD Deposition of Amorphous Silicon on Crystalline Si:Theory and Experiments”, 22nd European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 1678 (2007).
34.H. Fujiwara and M. Kondo, Appl. Phys. Lett., 90, 013503 (2007).
35.J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada and M. Konagai, Jpn. J. Appl. Phys., 46, No. 6A, 3296 (2007).
36.T. Mueller, S. Schwertheim, W. R. Fahrner, “Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications”, Journal of Applied Physics 107, 014504 (2010).
37.Sanyo Electric Co., US Patent 0230121, Sep. 2008.
38.Hsueh-Chuan lee, “Surface passivation of silicon heterojunction using hydrogenated amorphous silicon oxide layers”.
39.A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, Sol. Energy Mater. Sol. Cells 78, 3 (2003).
40.Y. Asano, D.S. Baer, R.K. Hanson, J. Non-Cryst. Solids 94, 5 (1987).
41.J. Robertson, M.J. Powell, Thin Solid Films 337, 32 (1999).
42.J. Robertson, J. Non-Cryst. Solids 266, 79 (2000).
43.A. Matsuda, Plasma Phys. Contr. Fusion. 39, 431 (1997).
44.D.Wolf, M. Kondo “Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements ”, Applied Physics Letters 90(4): 042111. (2007).
45.D. Wolf, M. Kondo, “Nature of doped a-Si:H/c-Si interface recombination ”, Journal of Applied Physics 105(10): 103707.(2009).
46.D.Wolf, S. Olibet, et al. “Stretched-exponential a-Si:H/c-Si interface recombination decay”, Applied Physics Letters 93(3): 32101.(2008).
47.Kim, S.K., et al., “Effect of hydrogen dilution on intrinsic a-Si : H layer between emitter and Si wafer in silicon heterojunction solar cell”, Solar Energy Materials and Solar Cells, 2008. 92(3): p. 298-301.
48.K. Das, U., et al., “Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films”, Applied Physics Letters, 2008. 92(6): p. 063504-3.
49.Ikuta, K., et al., “Nucleation and Coalescence in Hydrogenated Amorphous Silicon Studied by Scanning Tunnelin”.
50.D.J. Eaglesham, H.J. Gossmann, M. Cerullo, “Limiting Thickness hepi for Epitaxial Crowth and Room-Temperature Si Growth on Si(100)”, Physical review letters,Volume 65 ,No.10, 3 Sep. 1990.
51.C. S. Liu, C. Y. Wu, I. W. Chen, H. C. Lee and L. S. Hong, Prog. Photovolt: Res. Appl. (2011).
52.Meijun Luy, Ujjwal Das, Stuart Bowdenz, Steven Hegedus and Robert Birkmire, Prog. Photovolt: Res. Appl. 2011; 19:326–338.
53.Vinh Ai Dao, Youngseok Lee, Sangho Kim, Jaehyun Cho, Shihyun Ahn, Youngkuk Kim, Nariangadu Lakshminarayan, Journal of The Electrochemical Society, 158 (11) H1129-H1132 (2011).
54.D. Thibaut, D. V. Sylvaina, S. Florent, D. Djicknoumb, M. Delfina, G. Farret, Marie , K. J. Paul, R. P. Jeana, “Development of Interdigitated Back Contact Silicon Heterojunction (IBC Si-HJ) Solar Cells”, Energy Procedia 8 (2011) 294-300.

無法下載圖示 全文公開日期 2018/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE