簡易檢索 / 詳目顯示

研究生: 高逸竹
Yi-chu Kao
論文名稱: 支援未飽和與叢發性流量之IEEE 802.11e 無線區域網路之效能分析
Performance Analysis of IEEE 802.11e Wireless Local Area Networks with Unsaturated and Bursty Traffic
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 王乃堅
Nai-Jian Wang
林永松
Yeong-Sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 95
中文關鍵詞: 馬可夫調變之波以松程序自我類似性成功送達率延遲波以松IEEE 802.11e
外文關鍵詞: MMPP, self-similar, throughput, delay, Poisson, IEEE 802.11e
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於無線區域網路的低成本,容易安裝以及比3G網路有較高的資料傳輸率,使得它獲得普遍的流行。較受歡迎之無線區域網路標準為802.11系列。傳統的IEEE 802.11是使用具有以二為基底之指數型後退法則之CSMA/CA作為MAC層協定。CSMA/CA是以競爭為基礎且沒有提供任何優先權機制,因此沒有提供服務之差異化。因此當我們期望無線網路除了非即時性的資料流量以外還能夠提供即時性語音及影像的服務時,IEEE 802.11e因而被提出以提供服務差異化。IEEE 802.11e中的一個進接機制即為EDCA,在本篇論文中,我們透過模擬來研究在不同流量情境之下EDCA的效能。我們考慮更接近真實的流量模型來取代一般文獻所假設的飽和情形,例如,Poisson以及MMPP流量模型。為了強調網際網路流量的自我類似性,我們假設MMPP程序之ON與OFF週期不只是指數型分佈而且也可以是Weibull分佈。在此系統中使用的是RTS/CTS進接機制,並且假設每個工作站的佇列是有限的。我們考慮的效能量度包含成功送達率、平均進接延遲,佇列延遲,因為進接失敗與緩衝器滿溢而導致的封包遺失率。


    Wireless local area networks have gained a lot of popularity in recent years due to its ease of installment, low cost and high data rate compared to 3G networks. One standard family of the popular wireless local area networks is the IEEE 802.11 series. The legacy IEEE 802.11 utilizes CSMA/CA with binary exponential backoff as its Medium Access Control (MAC) protocol. CSMA/CA is contention-based, and does not provide any priority schemes and thus service differentiation. As more and more real-time voice and video other than non-real-time data are expected in wireless domain, IEEE 802.11e is proposed to support service differentiation. One of the access scheme of IEEE 802.11e is the enhanced distributed channel access (EDCA). In this thesis, we study the performance of EDCA under different traffic scenarios via computer simulation. Instead of the saturated traffic scenario that is often assumed, we consider more realistic traffic models, e.g., Poisson and Markov Modulated Poisson Process (MMPP) traffic models. To emphasize on the self-similarity of internet traffic, ON and OFF periods of MMPP processes are assumed to be not only exponentially distributed but also Weibull distributed. We study the RTS/CTS access mechanism. Furthermore, each station is assumed to have a finite queue. The performance measures of interest are throughput, mean access delay, queueing delay, and packet losses due to both access failure and buffer overflow.

    摘要 I Abstract II Contents IV List of Figures V List of Tables VIII Chapter 1 Introduction 1 Chapter 2 IEEE 802.11e Reviews 3 2.1 Architecture 3 2.2 PHY Layer 4 2.3 MAC Sublayer 5 2.4 Distributed Coordination Function (DCF) 6 2.5 EDCA Overview 8 Chapter 3 Simulation Environment 11 3.1 Traffic characterization 11 3.2 Performance measures 12 Chapter 4 Simulation results 11 4.1 Saturated Model 15 4.2 Poisson Model 16 4.2.1 Arrival rate 16 4.2.2 Buffer size 17 4.2.3 AIFS 19 4.2.4 Initial Contention Window 19 4.3 MMPP-Exp Model 20 4.3.1 Arrival rate 20 4.3.2 Buffer size 21 4.3.3 AIFS 21 4.3.4 Initial Contention Window 22 4.4 The MMPP-Weibull Model 22 4.4.1 Arrival rate 22 4.4.2 Buffer size 24 4.4.3 AIFS 24 4.4.4 Initial Contention Window 24 4.5 Burstiness of Packet Arrivals 25 4.6 Buffer Size 26 4.7 AIFS 27 4.8 Initial Contention Window Size 28 4.9 Window Increasing Factor 29 4.10 Ratio of ON and OFF Durations 30 Chapter 5 Conclusion 93 References 94

    [1] IEEE 802.11e, Draft Supplement to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS), ISO/IEC IEEE 802.11e Standard, November 2005.
    [2] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ISO/IEC IEEE 802.11 Standard, 1999.
    [3] Stefan Mangold, Sunghyun Choi, Peter May, Ole Klein, Guido Hiertz, and Lothar Stibor, “IEEE 802.11e Wireless LAN for Quality of Service,” in Proc. European Wireless ’02, Florence, Italy, February 2002.
    [4] H. L. Truong and G. Vannuccini, “The IEEE 802.11e MAC for Quality of Service in Wireless LANs,” in Proceedings of SSGRR 2003w, ‘Aquila, Italy, pp. 6-12, Jan. 2003.
    [5] G. Bianchi, L. Fratta, and M. Oliveti, “Performance Evaluation and Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless LANs,” Proc. PIMRC, Taipei, pp. 392-396, Taiwan 1996.
    [6] T. S. Ho and K. C. Chen, "Performance Evaluation and Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless LAN's", Proc. IEEE PIMRC, Taipei, Taiwan, pp. 392-396, Oct. 1996.
    [7] G. Bianchi, “IEEE 802.11-Saturation Throughput Analysis,” IEEE Communications Letters, Vol. 2, No. 12, pp. 318-320, Dec.1998.
    [8] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE JSAC, Vol. 18, No. 3, pp. 535-547, Mar. 2000.
    [9] E. Ziouva and T. Antonakopoulos, “CSMA/CA Performance under High Traffic Conditions: Throughput and Delay Analysis,” Computer Communications, pp.313-321, 25 (2002).
    [10] Zhen-ning Kong, Danny H. K. Tsang, Brahim Bensaou, and Deyun Gao, “Performance Analysis of IEEE 802.11e Contention-Based Channel Access,” IEEE Journal, Vol. 22, Issue 10, pp. 2095 – 2106, Dec. 2004.
    [11] G. Anastasi and L. Lenzini, “QoS Provided by the IEEE 802.11 Wireless LAN to Advanced Data Applications: a Simulation Analysis,” Wireless Networks, Vol. 6, Issue 2, pp. 99 – 108, 2000.
    [12] Yang Xiao, “Enhanced DCF of IEEE 802.11e to Support QoS,” IEEE Wireless communications and Networks, Vol. 2, pp. 1291 – 1296, March 2003.
    [13] Yang Xiao, “IEEE 802.11e: QoS Provisioning at the MAC Layer,” IEEE Wireless communications, pp. 72 - 79, June 2004.
    [14] Hua Zhu and Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services,” IEEE Computer Communications and Networks, pp.163–168, Oct. 2003.
    [15] F. Eshghi and A. K. Elhakeem, “Performance Analysis of Ad Hoc Wireless LANs for Real-Time Traffic,” IEEE JSAC, Vol. 21, No. 2, pp. 204-215, Feb. 2003.
    [16] R. Gusella, “Characterizing the Variability of Arrival Processes with Indexes of Dispersion,” IEEE Journal on Selected Areas in Communications, Vol. 9, Issue 2, Feb. 1991.
    [17] W. E. Leland and M. S. Taqqu, W. Willinger and D.V. Wilson, “On the Self-Similar Nature of Ethernet Traffic,” IEEE/ACM Transactions on Networking, Vol. 2, Issue 1, pp. 1–15, Feb. 1994.
    [18] H. Heffes and D. M. Lucantoni, “A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance,” IEEE Journal on Selected Areas in Communications, Vol. 4, Issue 6, Sept. 1986.
    [19] M. E. Crovella and A. Bestavros, “Explaining World Wide Web Traffic Self-Similarity,” technical report TR-95-015, Computer Science Department, Boston University, October 12, 1995.

    QR CODE