簡易檢索 / 詳目顯示

研究生: 索羅門 格塔喬海鲁
Solomon Getachew Hailu
論文名稱: Tunable Optical Delay Lines Based on Racetrack Resonators with Tunable Coupling and Stable Wavelength
Tunable Optical Delay Lines Based on Racetrack Resonators with Tunable Coupling and Stable Wavelength
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
廖顯奎
Shien-Kuei Liaw
宋峻宇
Jiun-Yu Sung
張祐嘉
You-Chia Chang
曹恒偉
Hen Wai Tsao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 103
外文關鍵詞: Balanced Mach-Zehnder Interferometer, Racetrack Resonator, Tunable Optical Delay Line, Thermal Heating
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The integrated optical delay lines (ODLs), can be implemented using various structures, such as single or coupled resonators, gratings, photonic crystals, multi-path switchable structures, and recirculating loop structures. The delay tuning in ODLs is enabled by either changing the group refractive index of the waveguide or changing the length of the optical path. For optical sensing or biomedical sensing where the light source usually has a stable and narrow linewidth, the design rule of the tunable optical delay line (ODL) can be different from the ODLs for optical communications and buffering.
    In this work, we present here a novel way to tune a racetrack resonator based on a single-stage and two-stage ODL by a push-pull operation to stabilize the resonant wavelength. Full device simulation that accounts for the thermal tuning effect and the integrated device is conducted to verify the characteristics of the tunable optical delay lines.
    With the simple racetrack resonator, the group delay can simply be tuned by changing the coupling coefficient of the resonator while the wavelength is stabilized by tuning the racetrack loop. We demonstrate the tuning of group delay to nearly 20 ps for a single-stage and 40 ps for two-stage while fixing the resonant wavelength by adjusting the heating power of Heater 1 and Heater 3, respectively. The maximum group delay, in a single-stage and two-stage, as high as 200 ps, and 400 ps respectively can be achieved by tuning the coupling coefficient to have an even sharper resonant peak. With the proper control scheme, the novel architecture of two-stage ODLs doubles the group delay tunability range compared to a single-stage ODL. The tuning of hundreds of ps is achievable with a very compact device and very small power consumption.

    ABSTRACT I ACKNOWLEDGMENTS II TABLE OF CONTENTS III LIST OF FIGURES V LIST OF TABLES IX GLOSSARY OF TERMS………………………………………….............IX NOTATIONS………………………………………………………………XI CHAPTER 1 – INTRODUCTION…………………………………………1 1.1. Silicon Photonics 1 1.2. SOI Technology 5 1.3. Thermo-Optic Effect in Silicon 6 1.4 Motivation for the Work………………………………………………………..7 1.5 Organization of the Dissertation 10 CHAPTER 2 - LITERATURE REVIEW 11 2.1 Photonic Integrated Circuits for TODLs 11 2.2 Overview of Optical Delay Lines 13 2.2.1 Coupled Ring Resonator Based on Delay Lines………………………...14 2.2.2 Photonic Crystal Delay Lines 15 2.2.3 Recirculating Loop Delay Lines 17 2.2.4 Application of ODLs................................................................................18 CHAPTER 3 – PROPOSED ARCHITECTURE AND OPERATION PRINCIPLES 25 3.1 Single-Stage Tunable ODL Based on Racetrack Resonator with BMZI 27 3.2 Cascaded Integrated Tunable Optical Delay Line (ODL) 30 CHAPTER 4 – THEORETICAL MODELING OF TUNABLE ODL 34 4.1 Group Delay of TODL 34 4.2 Transfer Function of TODL 36 CHAPTER 5 – SIMULATION RESULTS AND DISCUSSION 41 5.1 Thermal Heating Simulation 44 5.2 Integrated ODL Simulation Result 48 5.2.1 Single-Stage of Tunable ODL 48 5.2.2 Two Cascaded Identical Stages of Tunable ODL 54 CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 72 6.1 Conclusions 73 6.2 Future Work 74 REFERENCES 75 APPENDIX…………………………………………………………………87

    [1] Marpaung, D.; Roeloftzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser & Photonics Rev. 2012, 0,1-30.
    [2] Kallepall, L.N.; Rodirguez, A.; Vega, D.; Sun, D.; Zighed, L.; Rahomoni, S.; Le, T.T. Applications of Silicon Photonics in Sensors and Waveguides. InterchOpen: London, United Kingdom, 2018, pp.1-4, ISBN 978-1-78984-479-5.
    [3] Wang, J.; Long, Y. On-chip silicon photonic signalling and processing: a review Science Bulletin 2018, 63, 1267-1310.
    [4] Letuthold, C.J.; Koos, C.; Freude. W. Nonlinear silicon photonics. Nature Photo. 2010, 4, 535-544.
    [5] Barclay, P.E.; Srinivason, K.; Painter, O. Nonlinear response of silicon photonic crystal micro resonators excited via an integrated waveguide and fiber taper. Opt. Express, 2005, 13, 801-820.
    [6] Gajda, A.; Zimmermann, L.; Jazayenfr, M.; Winzer, G.; Tian, H.; Elschner, R.; Richter, T.; Schubert, C.; Tillack, B.; Peterman. K. Highly efficient cw parametric conversion at 1550 nm in SOI waveguide by reverse biased p-i-n junction. Optic Express, 2012, 20, 13100-13107.
    [7] Wang, J.; Glesk, I.; Chen, L.R. Subwavelength grating devices in silicon photonics Science China Press, 2016, 61, 879-888.
    [8] Barwicz, T.; Byun, H.; Gan, F.; Holzwarth, C.W.; Popovic, M.A.; Rakich, P.T.; Watts, M.R.; Ippen, E.P.; Karter, F.X.; Smith, H.I.; et al. Silicon potonics for compact, energy, efficient interconnects. Jour. of Opti. Networking. 2007, 6, 63-67.
    [9] Doerr, C.R.; Taunay, T. Silicon photonics core wavelength and polarization diversity reciever. IEEE Phot. Tech. Lett. 2011, 23, 597-599.
    [10] Long, Y.; Wang, J. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonator based on optical forces. Scientific Repo. 2014, 4, 1-7.
    [11] Fong, K.Y.; Pernice, W.H.; Li, M.; Tang, H.X. Tunable optical coupler controlled by optical gradient forces. Opti. Express. 2011, 19, 15098-15108.
    [12] Wang. J, Chip scale optical interconnects and optical data processing using silicon photonic devices. Springer Science, 2015, 31, 353-372.
    [13] Park, M.K.; Kee, J.S.; Quah, J.Y.; Netto, V.; Song, J.; Fang, Q.; Mouchel, E.; Fosse, L.; Lo, G.Q. Lable-free aptamer sensor based on silicon microring resonator. Sensor & Actua. 2013, 176, 552-559.
    [14] Olio, F.D.; Passaro, M.N. Optical Sensing by optimized silicon slot waveguides. Optics Express 2007, 15, 4977-4993.
    [15] Giffth, A.G.; Lau, K.W.; Cardenas, J.; Okawachi, Y.; Mohanty, A.; Fain, R.; Lee, Y.D.; Yu, M.; Phare, C.T.; Poitras, C.B.; et al. Silicon-chips mid-ifrared frequency comp generation. Nature Commu. 2015, 6, 6299.
    [16] Mashanovich, G.Z.; Milesevic, M.M.; Nedeljkovic, M.; Owers, N.; Xiong, B.; Teo, E.J.; Hu, Y. Low loss silicon waveguides for the mid-infrared. Optics Express. 2011, 19, 7112-7119.
    [17] Zhang, Y.; Li, Z.; Li, B. MMI effects and self-imaging principle in two-dimensional silicon photonic crystal waveguide for teraherth waves. Optics Express. 2006, 14, 2679-2689.
    [18] Yee, C.M.; Sherwin, M.S. High-Q terahertz microcavities in silicon photonic crystal slabs. App.Phys. Lett. 2009, 94, 154104:1-154104:3.
    [19] Espinola, R. L.; Tsai, M.C.; Yardley, J. T.; Jr. Osgood, R. M. Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator. IEEE Photo. Tech. Lett. 2003, 15, 1366-1368.
    [20] Little, B. E.; Chu, S. T.; Haus, H. A.; Foresi, J.; Laine, J.P. Microring Resonator Channel Dropping Filters. Jour. of Lightwave Tech. 1997, 15, 998-1005.
    [21] Little, B. E.; Foresi, J. S.; Steinmeyer, G.; Thoen, E. R.; Chu, S. T.; Haus, H. A.; Ippen, E. P.; Kimerling, L. C.; Greene, W. Ultra-Compact Si–SiO Microring Resonator Optical Channel Dropping Filters IEEE Photonics Technology Lett. 1998, 10, 549-551.
    [22] Bazargani, H.P.; Burla, M.; Azana, J. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping Optics Lett. 2015, 40, 5423-5426.
    [23] Bazargani, H.P.; Azana, J. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. Optics Express 2015, 23, 23450-23461.
    [24] Jin, B.; Yuan, J.; Yu, C.; Sang, X.; Wu, Q.; Li, F.; Wang, K.; Yan, B.; Farrell, G.; Wai, P.K. Tunable fractional-order photonic differentiator based on the inverse Raman scattering in a silicon microring resonator. Optics Express, 2015, 23, 11141-11151.
    [25] Feng, D.; Feng, N.N.; Kung, C.C.; Liang, H.; Qian, W.; Fong, J.; Luff, B.J.; Asghari, M. Compact single-chip VMUX/DEMUX on the silicon-on-insulator platform. Optics Express. 2011, 19, 6125-6130.
    [26] Wang, J.; He, S.; Dai, D. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photonics Rev. 2014, 8, L18–L22.
    [27] Wang, J.; Yang, J.Y.; Huang, H.; Willner, A.E. Three-input optical addition and subtraction of quaternary base numbers. Optics Express 2013, 21, 488-499.
    [28] Wang, J.; Nuccio, S.R.; Yang, J.Y.; Wu, X.; Bogoni, A.; Willner, A.E. High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals. Optics Lett. 2012, 37, 1139-1141.
    [29] Kim, J.H.; Jhon, Y.M.; Byun, Y.T.; Lee, S.; Woo, D.H.; Kim. S.H. All-Optical XOR Gate Using Semiconductor Optical Amplifiers Without Additional Input Beam. IEEE Photonics Technology Lett. 2002, 14, 1436-1438.
    [30] Vo, T.D.; Pant, R.; Pelusi, M.D.; Schroder, J.; Choi, D.Y.; Debbarma, S.K.; Madden, S.J.; Davies, B.L.; Eggleton, B.J. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s160 Gbit/s DPSK signals. Optics Lett. 2011, 36, 710-712.
    [31] Wang, J.; Sun, J.; Kurz, J.R.; Fejer, M.M. Tunable Wavelength Conversion of ps-Pulses Exploiting Cascaded Sum- and Difference Frequency Generation in a PPLN-Fiber Ring Laser. IEEE Photonics Techn. Lett. 2006, 18, 2093-2095.
    [32] Wang, J.; Sun, J.; Zhang, X.; Huang, D. All-Optical Ultrawideband Pulse Generation Using Cascaded Periodically Poled Lithium Niobate Waveguides. IEEE Jour. of Quantum Electronics, 2009, 45, 292-299.
    [33] Bruel.M, “Silicon on insulator material technology Electronics Letters,” Vol:31, Issue 14, 1201-1202, July 1995.
    [34] M.J.R. Heck, H.-W. Chen, A.W. Fang, B.R. Koch, D. Liang, H. Park, M. Sysak, and J.E. Bowers, “Hybrid Silicon Photonics for Optical Interconnects,” IEEE Journ. of Sel. Top. in Quant. Electron., vol. 17, no. 2, p. 333-346 (2011)
    [35] G. Ghosh. Handbook of thermo-optic coefficient of optical material with applications. Academic Press, 1998.
    [36] Zhou, L.; Wang, X.; Lu, L.; Chen, J. Integrated optical delay lines. Chinese Optics Lett. (COL) Rev. 2018, 16, 101301:1 -101301:16.
    [37] Melati, D.; Waqas, A.; Mushtaq, Z.; Melloni, A. Wideband integrated optical delay line based on a continuously tunable Mach-Zehnder interferometer. IEEE J. Sel. Topics Quantum Electron. 2018, 24, 1-8.
    [38] Han, X.; Wang, L.; Zou, P.Y.; Wang, Y.; Zhang, S.; Gu, Y.; Wang, J.; Jian, X.; Zhao, M. A Tunable Optical Waveguide Ring Resonator for Microwave Photonic Filtering. In Proceedings of the IEEE International Topical Meeting on MWP, Alexandria, VA, USA, 28-31 Oct. 2013.
    [39] Cardenas, J.; Foster, M.A.; Sherwood-Droz, N.; Poitras, C.B.; Lira, H.L.; Zhang, B.; Gaeta, A.L.; Khurgin, J.B.; Morton, P.; Lipson, M. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt. Express 2010, 18, 26525–26534.
    [40] Melloni, A.; Canciamilla, A.; Ferrari, C.; Morichetti, F.; O’Faolain, L.; Krauss, T.F.; de la Rue, R.; Samarelli, A.; Sorel, M. Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison. IEEE Photonics J. 2010, 2, 181–194.
    [41] Zhuang, L.; Hoekman, M.; Beeker, W.; Leinse, A.; Heideman, R.; van Dijk, P.; Roeloffzen, C. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev. 2013, 7, 994–1002.
    [42] Zhuang, L.; Marpaung, D.; Burla, M.; Beeker, W.; Leinse, A.; Roeloffzen, C. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express 2011, 19, 23162–23170.
    [43] Liu, Y.; Whichman, A.R.; Isaac, B.; Kalkavage, J.; Adles, E.J.; Clark, T.R.; Klamkin, J. Ultra-low-loss silicon nitride optical beamforming network for wideband wireless applications. IEEE J. Sel. Topics Quantum Electron. 2018, 24, 1-10
    [44] Lenz, G.; Eggleton, B.J.; Madsen, C.K.; Slusher, R. Optical delay lines based on optical filters. IEEE J. Quantum Electron 2001, 37, 525-532.
    [45] Balbas. E.M.; Pandraud, G.; French, P.J. Thermo-Optical Delay Line for Optical Coherence Tomography. Proc. of SPIE 2007, 6717, 671704:1- 671704:9.
    [46] Han, X.; Wang, L.; Wang, Y.; Zou, P.; Gu, Y.; Teng, J.; Wang, J.; Jian, X.; Morthier, G.; Zhao, M. A tunable polymer waveguide ring filter fabricated with UV-based soft imprint technique. Journal of Lightwave Technology 2014, 32, 3924-3932.
    [47] Melati, D.; Melloni, A. On-chip continuously tunable optical delay line based on cascaded Mach-Zehnder interferometer. In proceedings of the Optical Fiber Communication Conference, OSA, San Diego, California, USA, 11-15 March 2018.
    [48] Waqas, A.; Melati, D.; Melloni, A. Cascaded Mach-Zehnder Architectures for Photonic Integrated Delay Lines. IEEE Photonics Technology Letters 2018, 30, 1830-1833.
    [49] Pegios, M.M.; Alexzndris, G.M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Miliou, A.; Pleros, N.; Vyrsokinos, K. On-Chip SOI Delay Line Bank for Optical Buffers and Time Slot Interchangers. IEEE Photonics Technology Letters 2018, 30, 31-34.
    [50] Park, H.; Mack, J.P.; Blumenthal, D.J.; Bowers, J.E. An integrated recirculating optical buffer. Opt. Express 2008, 16, 11124-11131.
    [51] Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nature Photonics 2007, 1, 319–330.
    [52] Xia, F.; Sekaric, L.; Vlasov, Y. Ultra compact optical buffers on a silicon chip. Nature Photonics 2007, 1, 65–71.
    [53] Hyeon, M.G.; Kim, H.J.; Kim, B.M.; Eom, T.J. Spectral Domain Optical Coherence Tomography with Balanced Detection Using Single Line-Scan Camera and Optical Delay Line. Optics Express 2015, 23, 23079-23091.
    [54] Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics 2014, 8, 375-380.
    [55] Poon, J.K.; Scheuer, J.; Mookherjea, S.; Paloczi, G.T.; Huang, Y.; Yariv, A. Matrix analysis of microring coupled-resonator optical waveguides. Optics Express 2004, 12, 90-103.
    [56] Katti, R.; Prince, S. Photonic Delay Lines Based on Silicon coupled Resonator Optical Waveguide Structures. Silicon 2018, 10, 2793-2800
    [57] Xie, J.; Zhou, L.; Zou, Z.; Wang, J.; Li, X.; Chen, J. Continuously tunable reflective-type optical delay lines using microring resonators. Optics Express 2014, 22, 817-823.
    [58] Takahashi, H.; Carlsson, P.; Nishimura, K.; Usami, M. Analysis of Negative Group Delay Response of All-Pass Ring Resonator with Mach-Zehnder Interferometer IEEE Photonics Technology Letters 2004, 16, 2063-2065.
    [59] Madsen, C.K.; Lenz, G.; Bruce, A.; Cappuzzo, M.; Gomez, L.; Scotti, R.E. Integrated All-Pass Filters for Tunable Dispersion and Dispersion Slope Compensation. IEEE Photonics Technology Letters 1999, 11, 1623-1625.
    [60] Abediasl, H.; Hashemi, H. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express 2015, 23, 6509-6519.
    [61] Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195-199.
    [62] Richter, L.J.; Mandelberg, H.; Kruger, M.S.; McGrath, P. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE Journal of Quantum Electronics 1986,.22, 2070-2074.
    [63] Nguyen, V.D.; Weiss, N.; Beeker, W.; Hoekman, M.; Leinse, A.; Heideman, R.G.; Ton, G.L.; van Leeuwen, T.K.; Kalkman, J. Integrated-optics-based swept-source optical coherence tomography. Optics Letters 2012, 37, 4820-4822.
    [64] Li, Y.; Segers, P.; Dirckx, J.; Baets, R. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement. Biomedical Opt. Express 2013, 4, 1229-1235.
    [65] Shahoel, H.; Yao, J. Delay Lines DOI:10.1002/047134608x.w8234 Available online: https://www.researchgate.net/publication/278322164 (accessed on 24 September 2019).
    [66] Application Note : Photonic Integrated Circuits for Tunable Delay Lines. Available online:http://www.pics4all.jeppix.eu/public/downloads/AN/PICs4ALL _Application_Note_Delay_Lines.pdf (accessed on 18 October 2019).
    [67] Juan,L.C.; Javier, M.; Jose,M.F.; Laming, R.I. True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings. IEEE Photon.Technol. Lett. 1997, 9, 1529-1531.
    [68] Yoshitomo, O.; Mark, A.F.; Xianpei, C.; Amy, C.T.; Reza, S.; Michal, L.; Chris, X.; Alexander, L.G. Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides. 2008, Opti. Express. 16, 10349-10357.
    [69] EunSeo, C.; Jihoon, N.; Seon, Y.R.; Gopinath, M.; Byeong, H.L. All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line. 2005, Opti. Express. 13, 1334-1345.
    [70] Yurii, A.V,; Martin, O.B.; Hendrik, F.H.; Sharee, J.M. Active control of slow light on a chip with photonic crystal waveguides. Nature. 2005, 438, 65-69
    [71] D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
    [72] J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
    [73] Ivano, G.; David, S.; Dimitar, I.K.; Jurgen, B.; Lars, Z.; Bernd, T.; Kalus, P. Continously tunable delay line based on SOI tapered Bragg gratings. Opt. Express. 2012, 20, 11241-11246.
    [74] Xu, W.; Shasha, L.; Jianji, D. Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings. Proc.of SPIE. 2016, 10026, 100260C:1-10026C:6.
    [75] Nicolas, K.F.; Jie, Y.; Zhong, P.; Sai, C.; Wei, C.; Brent, E.L.; Ben, Y. Continously Tunable Optical Buffering at 40Gb/s for Optical Packet Switching Networks. Journal of Lightwave Tec. 2008, 26, 3776-3783.
    [76] Michael, LC.; Greeshma, G.; Mark, A.S.; William, M.J.; Solomon, A.; Fengnian, X.; Yurii, A.V.; Shayan, M. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. express. 2010, 18, 26505-26516.
    [77] F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: Bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
    [78] Jacob, B.K.; Paul, A.M. Tunable wideband optical delay line based on balanced coupled resonator structure. Opt.Express. 2009, 34, 2655-2657.
    [79] Fumihiro, S.; Norihiro, I.; Yoshiki, A.; Takemasa, T.; Toshihiko, B. Continously tunable slow-light device consisting of heater-controlled silicon microring array. Opt. Express. 2011, 19, 13557-13564.
    [80] Kaname, J.; Norio, T.; Yasuhiro, H.; Tsutomu, K.; Masao, K. Two-Port Optical Wavelength Circuits Composed of Cascaded Mach-Zehnder Interferometers with Point-Symmetrical Configuration. Jour.of Lightwave Tech. 1996, 14, 2301-2310.
    [81] Amnon, Y.; Yong, X.; Reginaid, K.L.; Axel, S. Coupled-resonator otical waveguide: a proposal and analysis. Opt. Express. 1999. 24, 711-713.
    [82] Joyce, K.S.; Jacob, S.; Shayan, M. ; George, T.P.; Yanyi, H.; Amnon, Y. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express. 2004, 12, 90-103.
    [83] Joyce, K.S.; Lin,Z.; Guy, A.D.; Amnon, Y. Polymer Microring Coupled-Resonator Optical Waveguides. Jour. Of Lightwave Tech. 2006, 24, 1843-1849.
    [84] Daryl, M.B.; Isabella, H.R.; Tobias, K.; Nir, R.; Laurens, K.; Thomas, K. Optical Delay in Silicon Photonic Crystals Using Ultrafast Indirect Photonic Transitions. IEEE. 2013, 978, 1-4.
    [85] Eiichi, K.; Kengo, N.; Akihiko, S.; Hideaki, T.; Koji, T.; Tomonari, S.; Shinji, M.; Masaya, N. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity. Appl.Phys.Lett. 2015, 107, 221101:1-221101:5.
    [86] Rod, T.; Pei-cheng, K.; Connie, J.C. Slow-light optical buffers: capabilities and fundamental limitations. Jour. Of Lightwave Tech. 2005, 23, 4046-4066.
    [87] Toshihiko, B. Slow light in photonic crystals. Nat. Photonics. 2008, 2, 465-473.
    [88] Jiejun, Z.; Jianping, Y. Photonic True-Time Delay Beamforming Using a Switch-controlled Wavelength-Dependent Recirculating Loop. Jour.of Lightwave Tech. 2016, 34, pp. 3923-3929.
    [89] Georgios, C.; G.K.M, Hasanuzzman Andreas, P.; Stavros, L. High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multi-loop topology. Opt. Comm. 2017, 387, 361-365.
    [90] Enrique, P.; John, R. Toward Applications of Slow Light Technology.Opt.Photon. News. 2007, 18 40-45.
    [91] Joe, T.M.; Benjamin, J. E. Expect more delays. Nature. 2005, 433,811-812.
    [92] Daniel, G. Slow light brings faster communication. Phys.World. 2005. 18, 30.
    [93] Jianping, Y. Microwave Photonics. J.Lightwave Technol. 2009, 27, 314-335.
    [94] Weimin, Z.; Michael, S.; Steven, W.; Olukayode, O.; Lingjun, J.; Stephen, A.; Z.Rena,; H. Developing an integrated photonic system with a simple beamforming architecture for phased-array antennas. App.Opti. 2017, 56, B5-B13.
    [95] Miguel, A.P.; Grosskopf, N.G.; Boja, V.V.; Javier, H.; Jose, M.M.; Pablo, S.; Valentin, P.; Juan, L.C.; Alexandre, M.; Julien, G.; Alain, E.; Jean,Luc-V.; Oliver, P.; Eric, E.; Nakita, V.; Moon, S.C.; Jan Hendrik, den.B; Francisco, M.S.; Meint, K.S.; Javier, M. Optically beamformed beam-switched adaptive antennas for fixed and mobile broad-band wireless access networks. Microwave Theory Technol. 2006, 54, 887-899.
    [96] Chao, W.; Jianping, Y. Fiber Bragg gratings for microwave photonics subsystems. Opt. Express. 2013, 21, 22868-22884.
    [97] Joerg, P.; Victor, B.; Matthias, L.; Yimin, Y.; Daniel, W.; Tobias, H.; Klaus, H.; Philipp, S.; Jingshi, L.; David, H.; Rene, S.; Claudius, W.; Ronald H.; Wolfgang F.; Juerg, L.; Tobias, J.K.; Christian, K. Coherent terabit communications with microresonator Kerr frequency comps. Nat. Photon. 2014, 8, 375-380.
    [98] Marco, M.; Antonio, C.; Stefano, G.; Francesco, M. Variable Symbol-Rate DPSK Receiver Based on Silicon Photonics Coupled-Resonsonator Delay Line. J. Lightwave Technol. 2014, 32, 3324-3330.
    [99] Morichetti, F.; Melloni, A.; Ferrari, C.; Martinelli, M. Error-free continously-tunable delay at 10 Gbit/s in reconfigurable on-chip delay-line. Opt. Express. 2008, 16, 8395-8405
    [100] Bogarets, W.; De Heyn,.P.; Van Vaerenbergh, T.; De Vos, K.; Selvaraja, S.K.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Bates, R. Silicon microring resonators. Laser & Photonics reviews. 2012, 6, pp. 47-73.
    [101] Lumerical Solutions’ Inc.Innovative Photonic Design Tools, Available online : http://www.lumerical.com. (accessed on 14 March 2019).
    [102] RP Photonics Encyclopedia. Available online: https://www.rp-photonics.com/group delay.html. (aceccesed on 19 October 2019).
    [103] Green, W.M.; Lee, R.K.; deRose, G.A.; Scherer, A.; Yariv, A. Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermo-Optic Switching and Coupling Control. Optic Express 2005, 13, 1651-1659.
    [104] Harris, N.C.; Ma, Y.M.; Mower, J.M.; Jones, T.B.; Englund, D.; Hochberg, M.; Galland, C. Efficient, compact and low loss thermos-optic phase shifter in silicon. Optics Express 2014, 22, 10487-10493.
    [105] Jacques, M.; Samani, A.; El-Fiky, E.; Patel, D.; Xing, Z.; Plant, D.V. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Optics Express 2019, 27, 10456-10471.
    [106] Ozer, Y.; Kocaman, S. Stability Formulation for Integrated Opto-mechanic Phase Shifters. Scientific Reports 2018, 8, 1937:1-1937:9, doi:10.1038/s41598-018-20405-1.
    [107] Pfeifle, J.; Alloatti, L.; Freude, W.F.; Leuthold, J.; Koos, C. Silicon-Organic Hybrid Phase Shifter Based on a Slot Waveguide with a Liquid-Crystal Cladding. Optics Express 2012, 20, 15359-15376.
    [108] Malik, A.; Dwivedi, S.; van Landschoot, L.; Muneeb, M.; Shimura, Y.; Lepage, G.; van Campenhout, J.; Vanherle, W.; van Opstal, T.; Loo, R; Roelkens, G. Ge-On-Si and Ge-On-SOI Thermos-Optic Phase Shifters for The Mid-Infrared. Optics Express 2013, 22, 28479-28488.
    [109] Maegami, Y.; Cong, G.; Ohno, M.; Okano, M.; Yamada, K. Strip-loaded waveguide-based optical phase shifter for high-efficency silicon optical modulators. Photon. Res. 2016, 4, 222-226.
    [110] Cocorullo, G.; Della, F.G.; Rendina, I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 1999, 74, 3338-3340.

    QR CODE