簡易檢索 / 詳目顯示

研究生: 蔡欣男
Hsin-Nan Tsai
論文名稱: 退化系統在執行檢驗工作下的最佳置換模型
Optimal Replacement Model for a Deteriorating System with Inspections
指導教授: 徐世輝
Shey-Huei Sheu
王福琨
Fu-Kwun Wang
口試委員: 林義貴
Yi-Kuei Lin
王國雄
none
柯沛程
none
簡郁紘
none
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 107
中文關鍵詞: 小修非均勻卜瓦松過程隨機退化置換模型檢驗
外文關鍵詞: Minimal Repair, Non-Homogeneous Poisson Process, Stochastic Deterioration, Replacement Model, Inspection.
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為延續企業的競爭優勢,業者亟需能符合成本效益、且能隨時保持高性能狀態的作業系統,因此適當的對系統進行維修置換,將可有效的降低成本以及防止故障的發生。本論文將針對退化系統在執行檢驗工作的條件下提出兩種置換模型,再分別求最佳策略。

    首先,針對此兩種置換模型,一旦故障發生,退化系統均必須透過執行檢驗工作才可將其檢查出。而系統所遭遇的故障有兩種,其中包含型-I故障以及型-II故障,我們是以修理的方式排除型-I故障,以直接置換的方式排除型-II故障。在第一種置換模型下,我們設立此退化系統的置換條件為第 次型-I故障或首次型-II故障,視何者先發生即先進行置換。此外,假設故障發生的機率與故障發生的次數有關。然而,即使系統可因型-I故障而修理,但卻會隨機退化,也就是其運作時間將隨機遞減,修理時間將隨機遞增。第二種的退化系統置換模型,我們則是延伸原先第一種置換模型,新增設一置換條件:運作年齡,因此置換條件更換成:運作年齡達到 、或第 次型-I衝擊或首次型-II衝擊,視何者先發生即先進行系統置換。

    針對以上兩種置換模型,分別推導出相關長期每單位成本函數,並探討使成本函數最小化的最佳解存在時之條件。本研究可作為類似退化系統或產品在訂定維修置換策略時的參考。


    To gain and remain competitive advantage, manufactures require a cost-effective system for maintaining its production machinery in peak operation condition. Repairs and replacements enable us to reduce the operating cost and prevent the occurrence of system failure. In this research we propose two kinds of the replacement models for a deteriorating system with inspections and then find the optimal policy for these two models.

    First, a deteriorating system with failures that could only be detected through inspection workfor each of the two replacement models.The system is assumed to have two types of failures including type I failure and failure II failure. Each type I failure, corrected by a minimal. We replace the system when a type II failure occurs.In first replacement model, the system is replaced at the Nth type I failure (minor failure) or first type II failure (catastrophic failure), depending on whichever occurs first. The probability of type I and II failure depends on the number of failures since the last replacement. Such systems can be repaired upon type I failure, but are stochastically deteriorating, that is, the lengths of the operating intervals are stochastically decreasing, whereas the durations of the repairs are stochastically increasing.In the second replacement model, we extend the first one replacement model and add another one replacement condition for the system’s working age. Hence the deteriorating is replaced at the occurrence of the Nth type I failure (minor failure), or the first type II failure (catastrophic failure), or at working age T, whichever occurs first.

    For each of the above two models, the unique optimal solution which minimizes the
    long-run expected cost per unit of time is determined respectively. This research can be a reference for setting maintenance and replacement policies to analogousdeteriorating systems and product.

    中文摘要……………………………………………………………………………….I 英文摘要……………………………………………………………………………..III 致謝…………………………………………………………………………………...V 目錄…………………………………………………………………………………..VI List of Notations…………………………………………………………………...VIII List of Figure and Tables…………………………………………………………XIII Chapter 1 Introduction………………………………………………………………1 1.1Background....................................................................................................1 1.2Literature Review…………………………………………………………..1 1.3 Research Step and Content……………………………………………….4 Chapter 2 Description of the Deteriorating Systems………………………………5 2.1 The Deteriorating Systems………………………………………………..5 2.2 Geometric Process Replacement Model………………………………….5 2.3 Non-Homogeneous Poisson Process (NHPP) Replacement Model.…….6 Chapter 3 A Replacement Model for a Deteriorating System with Inspections….7 3.1 Introduction………………………………………………………………..7 3.2 General Model……………………………………………………………..8 3.3 Formulation and Optimization………………………………………….13 3.4 Special Cases……………………………………………………………...19 3.5 Numerical Examples……………………………………………………..21 Chapter 4 AnExtended Replacement Model for a Deteriorating System with Inspections……………………………………………………………….32 4.1 Introduction………………………………………………………………32 4.2 General Model……………………………………………………………33 4.3 Formulation and Optimization………………………………………….42 4.4 Special Cases……………………………………………………………...53 4.5 Numerical Examples……………………………………………………..59 Chapter 5 Conclusions and Suggestions for Future Research…………………...80 5.1 Conclusions……………………………………………………………….80 5.2 Suggestions for Future Research………………………………………..81 References…………………………………………………………………………...83 作者簡介……………………………………………………………………………..87

    [1]Barlow,R.E.,Proschan,F.,Mathematical theory of reliability, New York: Wiley,
    1965.
    [2]Barlow, R.E., Proschan, F. ,Statistical theory of reliability and life testing
    probability models, New York: Holt, Rinehart & Winston, 1975.
    [3]Brown, M.,Proschan,F.,“Imperfect repair”, Journal of Applied Probability20,
    pp.851-859, 1983.
    [4]Block,H.W.,Borges,W.S.,Savits,T.H.,“Age-dependent minimal repair”,
    Journal of Applied Probability, 22, pp. 370-385, 1985.
    [5]Sheu,S.H.,Griffith,W.S.,“Multivariate age-dependent imperfect repair”, Naval
    Research Logistics,38, pp. 839-850, 1991.
    [6]Sheu,S.H.,Griffith,W.S.,“Multivariate imperfect repair”, Journal of Applied
    Probability, 29, pp. 947-956, 1992.
    [7]Chang,C.C.,Sheu,S.H.,Chen,Y.L.,Zhang,Z.G.,“A multi-criteria optimal
    replacementpolicy for a system subject to shocks”, Computers and Industrial
    Engineering,61, pp. 1035-1043, 2011.
    [8]Barlow,R.E.,Hunter,L.C.,“Optimum preventive maintenance policies”,
    Operations Research,8, pp. 90-100, 1960.
    [9]Beichelt,F.,“A general preventive maintenance policy”, Mathem.
    Operationsforschung und Statist, 7, pp. 927-936, 1976.
    [10]Boland,P.J.,Proschan,F.,“Periodic replacement with increasing minimal repair
    costs at failure”, Operations Research, 30, pp. 1183-1189, 1982.
    [11]Boland,P.J.,“Periodic replacement when minimal repair costs vary with time”,
    Naval Research Logistics Quarterly, 29, pp. 541-546, 1982.
    [12]Blocks,H.W.,Borges,W.S.,Savits,T. H.,“A general age replacement model
    with minimal repair”, Naval Research Logistics,35, pp.365-372, 1988.
    [13]Sheu,S.H.,Griffith,W.S.,Nakagawa,T.,“Extended optimal replacement model
    with random minimal repair costs”, European Journal of Operational Research,
    85, pp. 636-649, 1995.
    [14]Sheu,S.H.,“A generalized block replacement policy with minimal repair and
    general random repair costs for a multi-unit system”, Journal of the Operational
    Research Society, 42, 4,pp. 331-341, 1991.
    [15]Sheu, S.H., “A modified block replacement policy with two variables general and
    random minimal repair cost”, Journal of Applied Probability, 33, pp. 557-572,
    1996.
    [16]Makabe,H.,Morimura,H.,“A new policy for preventive maintenance”, Journal
    of the Operations Research Society of Japan,5, pp. 110-124, 1963.
    [17]Makabe,H.,Morimura,H.,“On some preventive maintenance policies”, Journal
    of the Operations Research Society of Japan,6, pp. 17-47, 1963.
    [18]Makabe,H.,Morimura,H.,“Some considerations on preventive maintenance
    policies with numerical analysis”, Journal of the Operations Research Society of
    Japan,7, pp. 154-171, 1965.
    [19]Morimura,H.,“On some preventive maintenance policies for IFR”, Journal of
    the Operations Research Society of Japan, 12, pp. 94-124,1970.
    [20]Nakagawa,T.,“Generalized models for determining optimal number of minimal
    repairs before replacement”, Journal of the Operations Research Society of
    Japan, 24, pp. 325-337,1981.
    [21]Sheu,S.H.,Griffith,W.S.,“Optimal number of minimal repairs before
    replacement of a system subject to shocks”, Naval Research Logistics, 43,
    pp. 319-333, 1996.
    [22]Rangan,A.,Esther Grace,R.,“Optimal replacement policies for a deteriorating
    system with imperfect maintenance”, Advanced Applied Probability, 21,
    pp.949-951, 1989.
    [23]Lam,Y.,“A repair replacement model”, Advanced Applied Probability, 22,
    pp. 494-497, 1990.
    [24]Sradje,W.,Zuckerman,D.,“Optimal strategies for some repair replacement
    models”, Advanced Applied Probability,22, pp. 641-656, 1990.
    [25]Sheu,S.H.,“Extended optimal replacement model for deteriorating systems”,
    European Journal of Operational Research,112, pp. 503-516, 1999.
    [26]Christer, A.H.,Waller,W.M.,“Delay time models of industrial inspection
    maintenance problems”, Journal of the Operational Research Society, 35(5),
    pp. 401-406, 1984.
    [27]Baohe,S.,“An optimal inspection and diagnosis policy for a multi mode
    system”,Reliability Engineering and System Safety,76, pp. 181-188, 2002.
    [28]Wang,W.,“An inspection model for a process with two types of inspections and
    repairs”, Reliability Engineering and System Safety,94, pp. 526-533, 2009.
    [29]Nakagawa,T.,Mizutani,S., Chen,M.,“A summary of periodic and random
    inspection policies”, Reliability Engineering and System Safety,95, pp. 906-911,
    2010.
    [30]Chen,M.,Qian,C., Nakagawa,T.,“Periodic and random inspection policies
    for computer systems”, Communications in Computer and Information Science,
    257, pp. 346-353, 2011.
    [31]Cheng,G.Q.,Li,L.,“A geometric process repair model with inspections and its
    optimization”, International Journal of Systems Science, 43(9), pp. 1650-1655,
    2012.
    [32]Lam,Y.,“A note on the optimal replacement problem”, Advanced Applied
    Probability, 20, pp. 479-482, 1988.
    [33] Baxter,L.A.,“Reliability applications of the relevation transform”, Naval
    Research Logistics Quarterly, 29, 323-330, 1982.
    [34] Gupta,R.C., Kirmani,S.N.U.A.,“Closure and monotonicity properties of
    nonhomogeneous possion processes and record values”, Probability in the
    Engineering and Informational Science, 2, pp. 475-484, 1988.
    [35]Kochar,S.C.,“Some results on interarrival times of nonhomogeneous poisson
    processed”, Probability in the Engineering and Informational Science, 10,
    pp.75-85, 1996.
    [36]Ross,S.M.,Applied probability models with optimization applications, San
    Francisco: Holden-Day, 1970.
    [37]Varberg,D.,Purcell,E.J.,Calculus,New Jersey Prentice Hall International, Inc.,
    1997.
    [38] Puri,P.S., Singh,H.,“Optimal replacement of a system subject to shocks: a
    mathematical lemma”, Operations Research,34, pp. 1183-1189, 1986.
    [39]Nakagawa,T.,Osaki,S.,“The discrete weibull distribution”, IEEE Transactions
    on Reliability, 24, pp. 300-301, 1975.
    [40]Zhang, Y.L, Yam, R.C.M, Zuo, M.J., “Optimal replacement policy for a
    multistate repairable system”, Journal of the Operational Research Society, 53,
    pp. 336-341, 2007.
    [41] Berrade, M. D., Yam, Cavalcante, Cristiano A.V., Scarf, Philip A., “Maintenance
    scheduling of a protection system subject to imperfect inspection and
    replacement”, European Journal of Operational Research, 218, pp. 716-725,
    2012.

    無法下載圖示 全文公開日期 2019/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE