簡易檢索 / 詳目顯示

研究生: 陳欣儀
Sin-Yi Chen
論文名稱: 以相圖計算方法預測鎳對鈷-鉻-鐵-錳-鎳高熵合金顯微結構影響及其硬度與腐蝕性質之研究
Predict the Microstructure by the CALPHAD Method and Investigation of the Hardness and Corrosion Behavior for the CoyCryFeyMnyNi¬x
指導教授: 顏怡文
Yee-wen Yen
口試委員: 顏怡文
Yee-wen Yen
朱瑾
Jinn P. Chu
高振宏
C. Robert Kao
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 高熵合金相圖計算鈷-鉻-鐵-錳-鎳合金系統電化學腐硬度
外文關鍵詞: high-entropy alloys, calculation of phase diagrams (CALPHAD) method, Co-Cr-Fe-Mn-Ni alloy system, electrochemical corrosion, Hardness
相關次數: 點閱:189下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高熵合金由五元或五元以上的元素組成,且每種元素的比例在5 at.%到35 at.%之間,其相對於一般合金而言較容易形成單一固溶體且結構簡單,這些高熵合金體系具有優異的物理化學性能,如高強度和硬度、良好的耐腐蝕性及熱穩定性,由於其極具潛力以及豐富的合金設計前景,高熵合金為金屬的開發帶來新的突破及想像。其中等莫耳比鈷-鉻-鐵-錳-鎳高熵合金由Cantor等人首先提出,它們具有單一的FCC相結構且具有出色的穩定性和拉伸性能,在低溫液態氮中 (77 K) 也不易脆化。
本研究中為了探討鎳含量對鈷-鉻-鐵-錳-鎳高熵合金系統的影響,利用CALPHAD (Calculation of Phase Diagram) 計算方法來模擬合金的組成。本研究首先使用Pandat軟體並搭配PanHEA資料庫,計算鎳元素比例為5~35 at.%之高熵合金,總共七個組成;在Scheil模擬結果顯示,合金1在鎳含量為5 at.%時由兩相FCC與BCC相所組成,其餘的合金2~7皆為單一FCC相,而在Lever Rule模擬中則顯示合金1~7於1000°C皆為單一FCC相,結果顯示鎳的增加有助於形成FCC穩定相。接著將模擬結果搭配實驗的方式進行驗證,本實驗使用高純度99.9 wt.% 鈷、鉻、鐵、錳、鎳金屬,利用電弧熔融製備合金,為了進行比較分析,將合金切半,一半做為鑄態合金,另一半在1000°C下進行240小時的熱處理。最後,分別用高解析度場發射掃描式電子顯微鏡 (FE-SEM) ,搭配能量散射X射線分析儀 (EDS) 、X射線繞射儀 (XRD)、穿透式電子顯微鏡 (TEM) 及電子能譜儀 (XPS) 鑑定其顯微組織、相結構及金屬氧化物等組成。
本研究亦針對鈷鉻鐵錳鎳高熵合金進行腐蝕電化學實驗及維氏硬度測試,根據極化曲線結果,可以發現大致上合金於熱處理前的腐蝕速率都略小於熱處理後的合金,其中合金5在熱處理前有最小的腐蝕速率為 〖1.54×10〗^(-3)(mm year-1)。而在硬度的表現上,合金1因為有富含鉻的第二相,因此其硬度值最高,為254 Hv。
從模擬及實驗結果可以得知,本研究除了合金1 (鎳元素比例為5 at.%) 含有其他相結構並同時具有氧化物,其餘合金 (鎳元素比例為10~35 at.%) 從實驗得到的結果與Pandat相圖模擬軟體計算所預測的結果有高度的吻合。


High-entropy alloys have five or more elements as their major constituents, and the contents of each element is greater than 5 at.% and less than 35 at.%. It is easy to form single solid solution, having simple structure. High-entropy alloys have excellent physical, chemical and mechanical properties, such as high strength and hardness, excellent corrosion resistance and thermal stability. Because high entropy alloys have potentially and various desirable properties, it takes new imagination and innovation for developing the novel alloys. Equimolar Co-Cr-Fe-Mn-Ni high entropy alloy put forward by Cantor et al. has single FCC structure, excellent stability and tensile strength, it will also not embrittlement at liquid nitrogen (77k).
To research the influence of Nickle to Co-Cr-Fe-Mn-Ni high entropy alloy system, we used the CALPHAD method to calculate the constituents of alloys. In this research, the Pandat software with the PanHEA database was used for simulation. We chose CoyCryFeyMnyNix (x= 5, 10, 15, 20, 25, 30 and 35 in atomic percent) seven groups to study. First, the results of Scheil model showed that alloy 1 with 5 at.% Ni has two phase, FCC and BCC, the others were all single FCC phase. In Lever Rule model, all seven alloys were single FCC phase at 1000°C. The increase of Ni will enhance the form of FCC phase.
In this study, we used the metals with purity of 99.9 wt.%, and the alloys were prepared by an arc melting furnace, half sphere of each sample was followed by heat treatment at 1000°C for 240 hours, the other half were as-cast samples. Finally, the microstructure and composition of them were analyzed by the field-emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS).
In this research, corrosion experiments and Vickers hardness tests were carried out on Co-Cr-Fe-Mn-Ni high entropy alloys. According to the experimental results, the corrosion rates of the alloys before heat treatment are slightly lower than that of the alloy after heat treatment. Among them, alloy 5 has the lowest corrosion rate, and the value is 〖1.54×10〗^(-3)(mm year-1). The results of hardness, because alloy 1 has the second phase that is rich of chromium, the value of hardness is the highest, which is 254 Hv.
The result of calculation and experiment indicated that the seven alloys were mainly composed of FCC structure. However, alloy 1 had two phases after heat treatment. For the other alloys, the calculation results were mostly consistent with experimental results.
Keywords: high-entropy alloys; calculation of phase diagrams (CALPHAD) method; Co-Cr-Fe-Mn-Ni alloy system; electrochemical corrosion; Hardness

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 前言 第二章 文獻回顧 2.1 高熵合金 2.1.1 高熵合金的發展 2.1.2 高熵合金 2.1.3.1 高熵效應 2.1.3.2 嚴重晶格扭曲效應 2.1.3.3 遲緩擴散效應 2.1.3.4 雞尾酒效應 2.1.4 多元高熵合金之開發及性能評估 2.1.4.1高熵合金固溶相形成之熱力學參數 2.1.4.2高熵合金結構形成參數評估 2.2 相圖計算方法 2.2.1 CALPHAD方法 (CALculation of PHAse Diagram method) 2.2.2 CALPHAD在高熵合金上的應用 2.2.3 Pandat計算模擬軟體 2.3高熵合金的腐蝕性質 2.3.1高熵合金之耐腐蝕性質 2.3.2 Co、Cr、Fe、Mn及Ni之耐腐蝕性質 第三章 實驗方法 3.1 實驗流程 3.2 合金組成 3.3 合金的配置 3.4 熱處理 3.5 X光繞射分析 3.6 顯微結構的觀察 3.7 試片腐蝕性質測試 3.8 硬度分析 第四章 結果與討論 4.1 計算結果 4.1.1 高通量計算結果─元素組成趨勢 4.1.2 相圖計算結果 4.2 合金組成及微結構 4.2.1 合金1之組成及微結構 (CoCrFeMnNix, Ni = 5 at.%) 4.2.2 合金2之組成及微結構 (CoCrFeMnNi x, Ni = 10 at.%) 4.2.3 合金3之組成及微結構 (CoCrFeMnNi x, Ni = 15 at.%) 4.2.4 合金4之組成及微結構 (CoCrFeMnNi x, Ni = 20 at.%) 4.2.5 合金5之組成及微結構 (CoCrFeMnNi x, Ni = 25 at.%) 4.2.6 合金6之組成及微結構 (CoCrFeMnNi x, Ni = 30 at.%) 4.2.7 合金7之組成及微結構 (CoCrFeMnNi x, Ni = 35 at.%) 4.3 合金腐蝕性質分析 4.3.1 電化學分析 4.3.2 經極化試驗後之合金表面分析(SEI) 4.4 合金硬度分析 第五章 結論 Reference

[1] Chen, G. and C. Liu, Moisture induced environmental embrittlement of intermetallics. International materials reviews, 2001. 46(6): p. 253-270.
[2] Chen, S.L., et al., On the calculation of multicomponent stable phase diagrams. Journal of Phase Equilibria, 2001. 22(4): p. 373-378.
[3] Song, J.-M., C.-F. Huang, and H.-Y. Chuang, Microstructural characteristics and vibration fracture properties of Sn-Ag-Cu-TM (TM=Co, Ni, and Zn) alloys. Journal of Electronic Materials, 2006. 35(12): p. 2154-2163.
[4] Zhang, Z., et al., A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Scientific Reports, 2013. 3(1): p. 1327.
[5] Cantor, B., Multicomponent and High Entropy Alloys. Entropy, 2014. 16(9): p. 4749-4768.
[6] Dederichs, P.H., Diffuse Scattering from Defect Clusters near Bragg Reflections. Physical Review B, 1971. 4(4): p. 1041-1050.
[7] Hsu, C.-Y., et al., Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metallurgical and Materials Transactions A, 2004. 35(5): p. 1465-1469.
[8] Huang, P.K., et al., Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1‐2): p. 74-78.
[9] Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
[10] Chen, T., et al., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 2004. 188: p. 193-200.
[11] Chen, Y.Y., et al., Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 2005. 47(9): p. 2257-2279.
[12] Tong, C.-J., et al., Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(5): p. 1263-1271.
[13] Chen, M.-R., et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0. 5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A, 2006. 37(5): p. 1363-1369.
[14] Lee, C., et al., Effect of the aluminium content of AlxCrFe1. 5MnNi0. 5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corrosion Science, 2008. 50(7): p. 2053-2060.
[15] Huang, Y.-S., et al., Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0. 5NiFe high-entropy alloy. Materials Science and Engineering: A, 2007. 457(1-2): p. 77-83.
[16] Ng, C., et al., Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy. Intermetallics, 2012. 31: p. 165-172.
[17] Gludovatz, B., et al., A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014. 345(6201): p. 1153-1158.
[18] Wu, Y., et al., A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Materials Letters, 2014. 130: p. 277-280.
[19] Yao, M.J., et al., A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 2014. 72-73: p. 5-8.
[20] Gludovatz, B., et al., Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature Communications, 2016. 7(1): p. 10602.
[21] Tsai, M.-H., et al., A second criterion for sigma phase formation in high-entropy alloys. Materials Research Letters, 2016. 4(2): p. 90-95.
[22] Ye, Y.F., et al., High-entropy alloy: challenges and prospects. Materials Today, 2016. 19(6): p. 349-362.
[23] Li, D. and Y. Zhang, The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016. 70: p. 24-28.
[24] Xia, S.Q., M.C. Gao, and Y. Zhang, Abnormal temperature dependence of impact toughness in AlxCoCrFeNi system high entropy alloys. Materials Chemistry and Physics, 2018. 210: p. 213-221.
[25] Pradeep, K.G., et al., Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering: A, 2015. 648: p. 183-192.
[26] Zhang, W., P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys. Science China Materials, 2018. 61(1): p. 2-22.
[27] Yeh, J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): p. 1759-1771.
[28] Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
[29] Otto, F., et al., Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013. 61(7): p. 2628-2638.
[30] Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
[31] Roy, A., et al., Lattice distortion as an estimator of solid solution strengthening in high-entropy alloys. Materials Characterization, 2021. 172: p. 110877.
[32] Wang, Z., et al., Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. Journal of Materials Science & Technology, 2018. 34(2): p. 349-354.
[33] Eißmann, N., et al., High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metallurgy, 2017. 60(3): p. 184-197.
[34] Tong, C.-J., et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(5): p. 1263-1271.
[35] Tian, Y., et al., Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method. Surfaces and Interfaces, 2019. 15: p. 135-140.
[36] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
[37] Guo, S. and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 2011. 21(6): p. 433-446.
[38] Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2): p. 233-238.
[39] Dąbrowa, J., et al., Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics, 2017. 84: p. 52-61.
[40] Takeuchi, A. and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. MATERIALS TRANSACTIONS, 2005. 46(12): p. 2817-2829.
[41] Cantor, B., et al., Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375-377: p. 213-218.
[42] Guo, S., et al., More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013. 41: p. 96-103.
[43] Zhang, Y., et al., Solid‐solution phase formation rules for multi‐component alloys. Advanced engineering materials, 2008. 10(6): p. 534-538.
[44] Wu, W.-H., C.-C. Yang, and L. Yeh. Industrial development of high-entropy alloys. in Annales de Chimie-Science des materiaux. 2006. Paris; New York: Masson, 1978-.
[45] Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
[46] Sheng, H.F., M. Gong, and L.M. Peng, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Materials Science and Engineering: A, 2013. 567: p. 14-20.
[47] Kittel, C., Introduction to solid state physics. 1996, New York: Wiley.
[48] Zhu, J.H., P.K. Liaw, and C.T. Liu, Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Materials Science and Engineering: A, 1997. 239-240: p. 260-264.
[49] Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics, 2011. 109(10): p. 103505.
[50] Lukas, H.L.F.S.G.S.B., Computational thermodynamics : the CALPHAD method. 2007.
[51] Chang, Y.A., Phase diagram calculations in teaching, research, and industry. Metallurgical and Materials Transactions A, 2006. 37(2): p. 273-305.
[52] Wang, C., Experimental and computational phase studies of the ZrO2-based systems for thermal barrier coatings. 2006.
[53] Chen, S.L., et al., The PANDAT software package and its applications. Calphad, 2002. 26(2): p. 175-188.
[54] Zhang, C. and M.C. Gao, CALPHAD modeling of high-entropy alloys, in High-Entropy Alloys. 2016, Springer. p. 399-444.
[55] Durga, A., K.C. Hari Kumar, and B.S. Murty, Phase Formation in Equiatomic High Entropy Alloys: CALPHAD Approach and Experimental Studies. Transactions of the Indian Institute of Metals, 2012. 65(4): p. 375-380.
[56] Raghavan, R., K.C. Hari Kumar, and B.S. Murty, Analysis of phase formation in multi-component alloys. Journal of Alloys and Compounds, 2012. 544: p. 152-158.
[57] Zhang, C., et al., Computational Thermodynamics Aided High-Entropy Alloy Design. JOM, 2012. 64(7): p. 839-845.
[58] Zhang, F., et al., An understanding of high entropy alloys from phase diagram calculations. Calphad, 2014. 45: p. 1-10.
[59] Senkov, O.N., et al., Accelerated exploration of multi-principal element alloys for structural applications. Calphad, 2015. 50: p. 32-48.
[60] Senkov, O.N., et al., Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015. 6(1): p. 6529.
[61] Shun, T.-T., L.-Y. Chang, and M.-H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Materials Characterization, 2012. 70: p. 63-67.
[62] He, F., et al., Designing eutectic high entropy alloys of CoCrFeNiNbx. Journal of Alloys and Compounds, 2016. 656: p. 284-289.
[63] He, F., et al., Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Materials & Design, 2016. 104: p. 259-264.
[64] King, D.J.M., et al., Predicting the formation and stability of single phase high-entropy alloys. Acta Materialia, 2016. 104: p. 172-179.
[65] Zhang, Y. and Y.J. Zhou. Solid solution formation criteria for high entropy alloys. in Materials science forum. 2007. Trans Tech Publ.
[66] Wang, W.-R., W.-L. Wang, and J.-W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 2014. 589: p. 143-152.
[67] He, F., et al., The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Materials & Design, 2015. 85: p. 1-6.
[68] Chang, Y.A., et al., Phase diagram calculation: past, present and future. Progress in Materials Science, 2004. 49(3): p. 313-345.
[69] Cao, W., et al., PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad, 2009. 33(2): p. 328-342.
[70] Sarswat, P.K., et al., Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system. Applied Surface Science, 2019. 476: p. 242-258.
[71] Fu, Y., et al., Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science & Technology, 2021. 80: p. 217-233.
[72] Hsu, Y.-J., W.-C. Chiang, and J.-K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Materials Chemistry and Physics, 2005. 92(1): p. 112-117.
[73] Zhang, S., et al., Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Optics & Laser Technology, 2016. 84: p. 23-31.
[74] Garip, Y., N. Ergin, and O. Ozdemir, Resistance sintering of CoCrFeNiAlx (x = 0.7, 0.85, 1) high entropy alloys: Microstructural characterization, oxidation and corrosion properties. Journal of Alloys and Compounds, 2021. 877: p. 160180.
[75] Luo, H., et al., Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science, 2018. 134: p. 131-139.
[76] Yang, J., et al., Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution. Journal of Alloys and Compounds, 2020. 819: p. 152943.
[77] Zhao, R.-F., et al., Corrosion behavior of CoxCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution. Results in Physics, 2019. 15: p. 102667.
[78] Chai, W., T. Lu, and Y. Pan, Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation. Intermetallics, 2020. 116: p. 106654.
[79] Fan, Q., et al., Effect of high Fe content on the microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding. Surface and Coatings Technology, 2021. 418: p. 127242.
[80] Denpo, K. and H. Ogawa, Effects of nickel and chromium on corrosion rate of linepipe steel. Corrosion Science, 1993. 35(1): p. 285-288.
[81] Qiu, X.-W. and C.-G. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. Journal of Alloys and Compounds, 2013. 553: p. 216-220.
[82] Wang, S., Corrosion resistance and electrocatalytic properties of metallic glasses. Metallic Glasses-Formation and Properties, 2016. 395: p. 116-124.
[83] Zhou, W., et al., Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 2017. 85: p. 90-97.
[84] https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a

QR CODE