簡易檢索 / 詳目顯示

研究生: 邱信瑋
Hsin-wei Chiu
論文名稱: 考量捷運實際運轉特性之列車運行模擬與分析
Simulation and Analysis of Train Performance Based on Actual MRT Operation Characteristics
指導教授: 陳南鳴
Nanming Chen
柯博仁
Bwo-ren Ke
口試委員: 成維華
Wei-hua Chieng
連國龍
Kuo-lung Lian
曾乙申
Yi-shen Zeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 捷運推進系統列車模型黏著係數
外文關鍵詞: MRT, propulsion system, train model, adhesive coefficient
相關次數: 點閱:262下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用MATLAB/Simulink建立單一列車耗電效能模擬,列車系統是以捷運C301型高運量電聯車為研究對象,依序完成速度運行曲線模型、純量控制器模型、三種開關切換模式模型、換流器模型、第三軌電壓模型、交流感應馬達模型和負載模型。列車模型使用具有回授功能的純量控制器(Variable Voltage Variable Frequency Control, VVVF Control)計算目標轉速與馬達回授轉速的滑差以求得電機角頻率,再利用頻率與電壓關係輸出電壓命令,並根據列車當下速率選擇適合的開關切換模式以輸出換流器開關切換訊號,再讓訊號傳至換流器的IGBT電子元件 (Insulated Gate Bipolar Transistor, IGBT),將第三軌DC750V的電壓轉換成相差120度的三相交流電,供感應馬達使用,透過馬達輸出的轉速,計算列車在每個時間點的實際路段所需牽引力與阻力,換算成力矩再回送給馬達。最後,利用三個差異較大的實際路線資料及四種運行模式(如:加速、等速、減速、滑行)進行研究分析。針對列車運行速度、加速率、急衝度、總阻力、第三軌電壓與電流及列車能耗做深入分析與討論。從三個案例模擬結果得知,模擬結果皆符合電聯車規範所訂定的要求,而再生率約為10%~20%,如果能有效利用回收再生電能,將可節省營運成本,另外,透過案例三的滑行模擬,滑行每10秒僅多花費1秒鐘時間,但消耗電能將可節省6%以上,因此善用滑行模式確實可以節省電費成本。


    A single train power performance simulation based on MATLAB/Simulink is proposed in this study. The train type is the electric multiple unit of heavy-capacity in Mass Rapid Transit Systems. The speed model, scalar controller model, three kinds of propulsion switching mode model, inverter model, third rail Voltage model and load model are built and verified in sequence. At first, a variable voltage variable frequency control (VVVF Control) is employed to calculate the electrical angular frequency by optimal angular speed and motor feedback angular speed. The Voltage command is calculated through the relationship of voltage and frequency. In the propulsion switching model, a suitable propulsion switching mode is selected according to the train speed and the switching signals are calculated. By sending the signals to the inverter of the propulsion model, the 750V DC source from the third rail will be transferred to three-phase alternating current that sent to the train motors. The traction force and resistance force are calculated based on the motor angular speed in real-time actual route. The signals are converted into torque before they are sent back to the motor. Finally, the simulation results are analyzed with three significantly different routes and four kinds of running mode, acceleration, constant speed, deceleration and coasting. The voltage and current of the third rail and the train energy consumption are analyzed and discussed by considering the train speed, acceleration, jerk, and total resistances. From the simulation results, three cases are all in compliance with the EMU standard. Their regeneration rates are about 10% to 20%. If the regenerative energy can be effectively used, it will save a lot of operating costs. In the coasting simulation of the third case, it is found that running time takes only a second more when the train coasts for every 10 seconds and the power consumption can be saved by more than 6%. Therefore, it really can save the electricity cost if companies can use coasting mode well.

    摘要............................................................I Abstract.......................................................II 誌謝............................................................III 目錄............................................................IV 圖目錄..........................................................VI 表目錄..........................................................VIII 第一章、緒論.....................................................1 1.1 研究背景.................................................1 1.2 研究動機與目的............................................1 1.3 章節概述.................................................2 第二章、捷運列車電力推進系統介紹.....................................4 2.1 前言....................................................4 2.2 推進系統.................................................4 2.3 感應馬達.................................................5 2.4 再生煞車.................................................6 2.5 推進系統開關切換模式.......................................7 2.6 黏著牽引力...............................................8 2.7 列車阻力.................................................9 2.7.1 出發阻力.................................................10 2.7.2 行駛阻力.................................................11 2.7.3 加速率阻力...............................................14 2.8 坡度阻力.................................................15 2.9 彎道阻力.................................................16 第三章、高運量捷運列車電力推進系統模型................................17 3.1 前言....................................................17 3.2 MATLAB/Simulink簡介.....................................17 3.3 列車電力推進系統架構.......................................17 3.4 純量控制模型.............................................19 3.5 加速率與黏著力控制模型.....................................22 3.6 推進模式模型.............................................23 3.7 換流器模型...............................................29 3.8 第三軌模型...............................................29 3.9 負載模型.................................................31 3.9.1 牽引力模型...............................................33 3.9.2 阻力模型.................................................33 第四章、模擬結果與分析..............................................38 4.1 前言.....................................................38 4.2 系統相關數據..............................................38 4.3 案例分析.................................................39 4.4 路線參數設定..............................................39 4.5 運行控制結果與分析.........................................42 4.6 第三軌電壓與電流...........................................48 4.7 列車能耗分析..............................................57 第五章、結論與未來展望..............................................65 5.1 結論....................................................65 5.2 未來展望.................................................66 參考文獻.........................................................67

    [1] 行政院內政部戶政司、統計處,「人口數及人口增加率」,行政院主計總處,民國101年。
    [2] 臺北市政府捷運工程局,「台北都會區捷運建設白皮書」,民國101年。
    [3] 蘇瑋璇,「電費大漲,北捷虧很大」,中國時報,民國101年4月14日。
    [4] B. R. Ke, C. L. Lin and C. W. Lai, “Optimization of Train-Speed Trajectory and Control for Mass Rapid Transit Systems,” Control Engineering Practice, Vol. 19, No. 7, pp. 675-687, 2011.
    [5] B. R. Ke, and N. Chen, “Analysis and Optimization of Maximum Speed Limit of Train Operation for Saving Energy in Rapid Transit Systems,” International Journal of Electrical Engineering, Vol. 17, No. 2, pp. 137-144, 2010.
    [6] M. Miyatake and H. Ko, “Optimization of Train Speed Profile for Minimum Energy Consumption,” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 5, No. 3, pp. 263-269, 2010.
    [7] Y. Ding, H. Liu, Y. Bai, and F. Zhou, “A Two-level Optimization Model and Algorithm for Energy-Efficient Urban Train Operation,” Journal of Transportation Systems Engineering and Information Technology, Vol. 11, No. 1, pp. 96-101, 2011.
    [8] M. Dominguez, A. Fernandez, A. P. Cucala, and P. Lukaszewicz, “Optimal Design of Metro Automatic Train Operation Speed Profiles for Reducing Energy Consumption,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 225, No. 5, pp. 463-473, 2011.
    [9] Y. Hou, J. Yang, and Q. Zhang, “Optimization of the Energy-saving of the Urban Rail Vehicle's Running,” Applied Mechanics and Materials, Vol. 155-156, pp. 278-284, 2012.
    [10] P. Wang, X. Lin, and Y. Li, “Optimization Analysis on the Energy Saving Control for Trains with Adaptive Genetic Algorithm,” 2012 International Conference on Systems and Informatics (ICSAI 2012), pp. 439-443, 2012.
    [11] 余丹萍,「電氣化鐵路牽引供電系統的仿真及影響研究」,浙江大學碩士論文,2011年。
    [12] 蒲思培,「CRH2型動車組再生制動過程仿真研究」,西南交通大學碩士論文,2012年。
    [13] 廖榮庭,「捷運推進系統精確模型之建立與電力潮流分析」,中山大學碩士論文,民國90年。
    [14] 張育宗,「捷運列車車載電池儲能系統之再生制動分析」,國立彰化師範大學碩士論文,民國99年。
    [15] 陸億恭,「全自動駕駛系統的節能技術的研究」,北京交通大學碩士論文,2011年。
    [16] 何宗軒,「淡水線電聯車推進系統」,捷運技術,9,第72-79頁,民國82年。
    [17] 黃漢榮,「軌道工程學」,高立圖書有限公司,2003年。
    [18] 何湘麟,「直流牽引動力分析」,捷運技術,6,第78-81頁,民國81年。
    [19] C. Zheng, B. Zhang, and D. Qiu, “Solving Switching Angles for the Inverter's Selected Harmonic Elimination Technique with Walsh Function,” IEEE Proceedings on Electrical Machines and Systems, Vol. 2, pp. 27-29, 2005.
    [20] N. J. Chiasson, M. L. Tolbert, K. J. Mckenzie, and Z. Du, “A Complete Solution to the Harmonic Elimination Problem,” IEEE Trans. on Power Electronics, Vol. 19, No. 2, pp. 491-499, 2004.
    [21] W. Zhang and Y. Sun, “Optimization of Output Voltage Waveform of Selective Harmonic Elimination Inverter,” International Conference on Power System Technology, pp. 1-4, 2006.
    [22] 李冠青,「特定諧波消除與規劃之三相大電流產生器研製」,台灣科技大學碩士論文,民國97年。
    [23] 莫清賢、詹舜宇,「交流伺服驅動-電力電子學」,全華科技圖書股份有限公司,民國81年。
    [24] B. K. Bose, “Modern Power Electronics and AC Drives,” Prentice Hall, 2001.
    [25] 邱家財,「鐵路運轉理論」,邱家財自行出版,民國100年。
    [26] 覃為剛、唐懷平,「輪軌水介質黏著分析」,西南交通大學學報,35(5),第509-512頁,2000年。
    [27] 林文立、劉志剛、方攸同,「地鐵列車牽引傳動再黏著優化控制策略」,西南交通大學學報,47(3),第465-470頁,2012年。
    [28] 王廣凱、李培曙,「淺談制動黏著係數的定義、影響因素及測試方法」,鐵道車輛,42(9),第23-25頁,2004年。
    [29] 顧伍樓,「地鐵車輛計算黏著係數和牽引電動機功率選用問題簡析」,鐵道機車車輛,23(6),第42-45頁,2003年。
    [30] 楊培盛、王月明、張攀鋒,「成都地鐵一號線牽引仿真研究」,機電產品開發與創新,20(2),第88-90頁,2007年。
    [31] 鐵道部標準計量研究所,「TBT 1407-1998 列車牽引計算規程[S]」,1998年。
    [32] 饒忠,「列車牽引計算」,中國鐵道出版社,2010年。
    [33] 呂則信,「軌道電力機車技術」,科技圖書股份有限公司,2006年。
    [34] V. A. Profillidis, “Railway Engineering,” Ashgate Pub Co, 2006.
    [35] D. T. Wilkinson, “Electric Braking Performance of Multiple-Unit Trains,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 199, No. 4, pp. 309-316, 1985.
    [36] H. Ukita, “Power and Traction,” Kawasaki Heavy Industries, Ltd. Rolling Stock Company, 2008.
    [37] 曾乙申,「捷運與輕軌供電系統電腦化模擬(上)—列車運行模擬」,捷運技術,台北捷運局,27,第161-184頁,民國91年。
    [38] 鈦思科技官方網站,http://www.terasoft.com.tw/。
    [39] 鈦思科技編著,「視覺化建模環境Simulink 入門與進階」,鈦思科技股份有限公司,民國100年。
    [40] P. Vas, “Vector Control of AC Machines,” Clarendon Press Oxford, 1990.
    [41] 黃仲欽,「電機機械理論」,上課講義,民國100年。
    [42] 交通部,「捷運軌道車輛技術標準規範-高運量鋼軌車輛規劃基準」,民國92年5月。
    [43] 王水平,「PWM控制與驅動器使用指南及應用電路: SPWM、PFC和IGBT控制與驅動器部份」,西安電子科技大學出版社,2005年。
    [44] 吳銘章、陳虞仁,「高運量電聯車車體材質及其結構設計」,捷運技術,35,第11-18頁,民國95年。

    無法下載圖示 全文公開日期 2018/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE