簡易檢索 / 詳目顯示

研究生: 許澤民
TSE-MIN HSU
論文名稱: 考量直流牽引動力電氣模型之台北捷運列車最佳省能速度曲線
Optimal Train Speed Curve for Saving Energy with Electrical Model of the DC Traction System on the Taipei Mass Transit System
指導教授: 連國龍
Kuo-Lung Lian
柯博仁
Bwo-Ren Ke
口試委員: 楊宗銘
Chung-Ming Young
陳南鳴
Nan-Ming Chen
曾乙申
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 列車速度曲線最佳化電氣能耗列車牽引動力模型粒子群演算法
外文關鍵詞: Optimization of Train Speed Curve, Electrical Energy Consumption, Traction Power System Model, Particle Swarm Optimization
相關次數: 點閱:283下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究台北捷運列車速度曲線最佳化,考量運行時間與實際列車運轉情形下做最佳化,利用粒子群演算法,使電氣能耗最小為目標。其中使用MATLAB建立捷運列車牽引動力模型,其中包含換流器、感應電動機、機械負載與直流第三軌供電等模型,最後應用於最佳化前的資料處理與列車運行模擬。在換流器模型的建置上本文未考慮諧波,與前人的模型比較,僅在功率與效率上稍有不同,但曲線走向一致,在整體分析上未造成太大影響,且運行模擬時間大量減少,更適合於速度曲線最佳化使用。
    最佳化結果以未使用最佳化、未使用滑行的最佳化、使用滑行的最佳化三種型式,分別對1280與2000公尺的站間距離進行分析。在站間距離1280公尺的案例未使用滑行的最佳速度曲線僅省能8.6%,使用滑行的最佳速度曲線則省能14.1%,兩者運行時間均較長。而在站間距離2000公尺的案例部分,因站間距離較長,最佳化的範圍較大,故結果較好。未使用滑行的最佳速度曲線省能15.27%,運行時間相同;使用滑行的最佳速度曲線省能達34%,運行時間較短。


    The main purpose of this thesis is to optimize Taipei MRT’s speed curve. Particle Swarm Optimization (PSO) is used to find the minimum electrical energy consumption, considering the operating times and actual train’s operational situation. A traction power system model, including inverter, induction machine, mechanical load and DC power supply models are constructed. These models are used for data processing of optimization and for train simulations. In this thesis, inverter model does not consider harmonic. Compared with previous study of model trains, only power and efficiency are slightly different. Moreover, all the generated curves have similar and consistent trends, expect that the simulation time is greatly reduced when compared to previous models. Hence, the model is more suitable for speed curve optimization.

    There are three cases considered in this thesis. They are no speed optimization, speed optimization without coasting and speed optimization with coasting. These three cases will be applied to two kinds of distances between two stations ¬– 1280 meters and 2000 meters, respectively. For 1280 meters, the best speed curve without coasting can only save energy by 8.6%, and the best speed curve with coasting can save energy by 14.1%. Both of these two cases result in longer run times. For 2000 meters, since the distances between two stations are longer, the optimization range is bigger. Consequently, the optimization results are better. Compared with no optimization case, the best speed curve without coasting saves energys by 15.27% under the same running time. The best speed curve with coasting can save energy up to 34% and have shorter running time.

    摘要I AbstractI 致謝III 目錄IV 圖目錄VI 表目錄VIII 第一章 緒論1 1.1 研究背景1 1.2 研究動機與目的1 1.3 章節概述4 第二章 捷運列車牽引動力系統模型5 2.1 列車牽引動力系統架構5 2.2 純量控制建模7 2.3 牽引動力換流器建模9 2.3.1 三相換流器模型9 2.3.2開關訊號模型14 2.4 直流供電建模15 2.4.1 修正節點分析之數學模型16 2.5 牽引動力電動機建模20 2.5.1 abc座標軸轉qd座標軸數學模型20 2.5.2 感應電動機數學模型23 2.5.3 電磁轉矩與機械方程式31 2.6 電動機機械負載建模32 2.6.1 起始阻力34 2.6.2 運行阻力34 2.6.3 坡度阻力35 2.6.4 曲線阻力36 2.7 再生煞車37 第三章 利用粒子群演算法於列車運行速度曲線最佳化39 3.1 粒子群演算法39 3.2 最佳化前之資料處理40 3.3 列車運行速度曲線最佳化42 第四章 實驗結果44 4.1 實驗參數44 4.2 牽引動力系統模擬結果48 4.2.1 案例一:站間單一列車運行模擬48 4.2.2 案例二:站間同向兩部列車運行模擬52 4.3 列車運行速度曲線最佳化57 4.3.1 案例一57 4.3.2 案例二66 第五章 結論與未來展望74 5.1 結論74 5.2 未來展望75 參考文獻76

    [1]臺北大眾捷運股份有限公司,「為民服務白皮書」,2016年。取自http://www.metro.taipei/ct.asp?xItem=73817152&ctNode=70079 &mp=12203
    [2]何湘麟,「直流牽引動力分析」,捷運技術,第六期,第78∼81 頁,民國八十一年。
    [3]B. R. Ke, C. L. Lin, and C. W. Lai, “Optimization of Train-Speed Trajectory and Control for Mass Rapid Transit Systems,” Control Engineering Practice, Vol. 19, No.7, pp. 675-687, 2011.
    [4]Y. Ding, H. Liu, Y. Bai, and F. Zhou, “A Two-level Optimization Model and Algorithm for Energy-Efficient Urban Train Operation,” Journal of Transportation Systems Engineering and Information Technology, Vol. 11, No. 1, pp. 96-101, 2011.
    [5]Y. Hou, J. Yang, and Q. Zhang, “Optimization of the Energy-saving of the Urban Rail Vehicle's Running,” Applied Mechanics and Materials, Vol. 155-156, pp. 278-284,2012.
    [6]P. Wang, X. Lin, and Y. Li, “Optimization Analysis on the Energy Saving Control for Trains with Adaptive Genetic Algorithm,” 2012 International Conference on Systems and Informatics (ICSAI 2012), pp. 439-443, 2012.
    [7]陸億恭,「全自動駕駛系統的節能技術的研究」,北京交通大學碩士論文,2011年。
    [8]邱信瑋,「考量捷運實際運轉特性之列車運行模擬與分析」,國立臺灣科技大學碩士論文,民國102 年。
    [9]Hari Maghfiroh, “Modeling and Speed Control of a Single Train of Taipei Mass Rapid Transit System,” Master Thesis, National Taiwan University of Science and Technology, 2014.
    [10]Indhira Kusuma Wardhani, “Simulation and Analysis of Dynamic Load Behavior in Different Headways for Taipei Rapid Transit Systems Electrical Multiple Units,” Master Thesis, National Taiwan University of Science and Technology, 2014.
    [11]D. H. Lee, and M. Dong, “Dynamic Network Design for Reverse Logistics Operations Under Uncertainty,” Transportation Research Part E, Vol. 45, No. 1, pp. 61-71, 2009.
    [12]H. R. Lourenco, J. P. Paixao, and R. Portugal, “Multiobjective Metaheuristics for the Bus Driver Scheduling Problem,” Transportation Science, Vol. 35, No. 3, pp. 331-343, 2001.
    [13]B. R. Ke, C. L. Lin, and C. C. Yang, “Optimization of Train Energy-Efficient Operation for Mass Rapid Transit Systems,” IET Intelligent Transport Systems, Vol. 6, No. 1, pp. 58-66, 2012.
    [14]P. G. Howlett, and J. Cheng, “Optimal Driving Strategies for a Train on a Track with Continuously Varying Gradient,” Journal of the Australian Mathematical Society Series B- Applied Mathematics, Vol. 38, pp. 388-410, 1997
    [15]陳詩韻,「軌道列車電能消耗極小化之速率最佳化模式」,國立成功大學土木工程學系碩博士班碩士論文, 2004.
    [16]P. Vas, Vector Control of AC Machines, Clarendon Press Oxford, 1990.
    [17]黃仲欽,「電機機械理論」,上課講義,民國100年。
    [18]B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall, 2001.
    [19]黃漢榮,「軌道工程學」,高立圖書有限公司,2003年。
    [20]P. W. Lehn, and K. L. Lian, “Frequency Coupling Matrix of a Voltage-Source Converter Derived From Piecewise Linear Differential Equations,” IEEE Transactions on Power Delivery, Vol. 22, No. 3, pp. 1603-1612, Jul. 2007.
    [21]D. G. Holmes, and T. A. Lipo, Pulse Width Modulation for Power Converters Principles and Practice, John Willey & Sons, pp. 120-123, 2003.
    [22]蘇奕肇,「捷運車輛、台灣高鐵」,2001。取自 http://citycat.theweb.tw/tmrt.htm
    [23]C.W. HO, A. E. Ruehli, and P. A. Brennan, “The Modified Nodal Approach to Network Analysis,” IEEE Transactions on Circuits and System, Vol. Cas-22, No. 6, June 1975.
    [24]C. M. Ong, Dynamic Simulation of Electric Machinery Using Matlab/Simulink, New Jersey: Prentice Hall, pp. 173-179, 1998.
    [25]W. W. Hay, Railroad Engineering, 2nd ed., John Willey & Sons, 1982
    [26]曾乙申,「捷運與輕軌供電系統電腦化模擬(上)—列車運行模擬」,捷運技術,台北捷運局,27,第161-184頁,民國91年。
    [27]B. P. Rochard, and F. Schmid, “A Review of Methods to Measure and Calculate Train Resistance,” Journal of Rail and Rapid Transit, Vol. 214, No. 4, pp. 185-199, 2000.
    [28]邱家財,「鐵路運轉理論」,邱家財自行出版,民國100年。
    [29]劉昌煥,「交流電機控制」,東華書局,民國102 年。
    [30]J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks, Vol.4, pp. 1942-1948, Aug. 1995.
    [31]朱明毅、郭建宏、汪孝恩、錢炳全,「複合型演化式演算法於路徑規劃之研究」,資訊科技國際期刊,第五卷,第一期 (2011)。

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE