簡易檢索 / 詳目顯示

研究生: 葉淑華
Shu-Hwa Yeh
論文名稱: 貝氏模糊展望模式應用於機場捷運場站開發廠商遴選之研究
Using Bayesian Fuzzy Prospect Model of Contractor Selection in the Airport MRT Station Development
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 曾惠斌
Hui-Ping Tserng
曾仁杰
Ren-Jye Dzeng
王維志
Wei-Chih Wang
姚乃嘉
Nie-Jia Yau
楊亦東
I-Tong Yang
呂守陞
Sou-Sen Leu
鄭明淵
Min-Yuan Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 132
中文關鍵詞: 多準則決策評估(MCDM)評選廠商偏好關係(PR)貝氏定理(BT)模糊效用(FU)展望理論(PT)模糊偏好關係(FPR)乘積偏好關係(MPR)累積展望理論(CPT)複合累積展望理論(CCPT)
外文關鍵詞: Multi-criteria decision making (MCDM), Contractor selection, Preference Relation (PR), Bayesian Theory (BT), Fuzzy Utility (FU), Prospect Theory (PT), Fuzzy Preference Relation (FPR), Multiplicative Preference Relation (MPR), Cumulative Prospect theory (CPT), Composite Cumulative Prospect Theory(CCPT)
相關次數: 點閱:347下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣自台北捷運開始建設,到高雄捷運、桃園機場捷運、台中捷運,每天使用捷運的旅次超過260萬人,人潮帶來的不僅是交通便捷的效益,也對車站周邊土地開發帶來商機,所以政府徵選優良的民間廠商共同投資興建。政府係依「政府採購法」甄選最優投資人並採三階段方式評選,第一階段資格審查:由工作小組先完成資格審查,並將廠商資料提送評審委員評分,此時委員僅依書面文件審查而產生『第一印象分數』;第二階段召開評選會議:由工作小組報告初審意見,接續由廠商進行簡報及現場答詢,然後各評審委員將對各投標廠商因不同『風險偏好』而產生『第二印象分數』,再由評審委員採總評分法或序位法進行綜合評選,評定優勝者或次優廠商為合格申請人,才可進入第三階段價格議約。
    本研究建構遴選廠商「貝氏模糊展望模式」,目的在於提供營建工程業主一選商決策模式,此模式以投標廠商提供之標單與佐證資料為基礎,讓業主就專案計畫成本、工期與品質三項投標承諾,評估投標廠商實現的可能性與期望值。本研究模式運用模糊偏好關係以建立成對的比較偏好決策矩陣,用以評估投標承諾實現的可能性,並應用貝氏定理之機率理論計算事後機率。在上述之『第一印象分數』,有如貝氏定理中之事前機率;透過外部資訊提供,應用貝氏定理可求得『第二印象分數』之事後機率。另外,考量評審委員對於投標廠商各有不同風險偏好與模糊性,因此風險偏好所存在的不確定性,可應用模糊效用方式呈現。其次,再藉由展望理論的機率和效用相乘,即可得到評選委員心中的期望值,作為評審委員之最後綜合評選。本研究結果顯示,採行多準則決策評估(MCDM)選商結果,與原始委員綜合評選之廠商名次相同;而貝氏模糊展望模式 (BFPM)選商結果,廠商間名次改變,以及廠商間得分(期望值)差距有加大效果,且模式於反映提供外部資訊後,更加凸顯其效果。


    Taiwan finished the construction from Taipei MRT, Kaohsiung MRT, Taoyuan Airport MRT to Taichung MRT. The number of trips using MRT is more than two million and six hundred thousand per day. The crowds bring not only the convenience of transportation, but also the commercial movements in the surrounding lands. Therefore, the government expropriates the land for the requirements of the MRT station development and select the suitable private contractors. The government and private contractors jointly invest and construct. The government would select the most appropriate investor in accordance with "Government Procurement Act" and adopt the three-stages method to evaluate. The first stage is to review the qualification evaluation. A working group will be set up within the government to collect the performances of the completed. Then, the committee members acquire "first impression score" to the tender documents. The second stage is to score the development proposals. The evaluation committee would be convened and the working group would report the comments of the preliminary examination. The committee members would adopt one of " second impression score" average unit price, or ranking for comprehensive evaluation to assess the most favorable contractor in terms of the most advantageous tender. Those who are the optimal or the second-best applicants are qualified to enter the third stage of price negotiation.
    This study constructs a Bayesian Fuzzy Prospect Model for the contractor selection. The purpose is to provide construction project owners with the decision-making model. The three bidding promises of duration/cost/quality are to evaluate the possibility and expectation of the bidder's realization. This research model uses fuzzy preference relations to establish a paired comparison preference decision matrix to evaluate the possibility of the realization of bid promises, and uses the probability of Bayes' theorem to calculate the posterior probability. The above-mentioned "first impression score" is like the prior probability in Bayes' theorem; through external information provided, the application of Bayes' theorem can obtain the posterior probability of "second impression score". In addition, considering that the review committee has different risk preferences and ambiguities for bidders, the uncertainty in risk preferences can be presented using fuzzy utility functions. Secondly, the posterior probability obtained in phase II by using Bayesian theory was multiplied with the Fuzzy utility to acquire the overall prospect value of the decision maker and sort the result.
    The results of this study can avoid the lowest bidder being selected; besides, the score gap of contractor selection can be increased, and the dierence between the top three contractors’ scores can be decreased as well. In addition to proposing an innovative decision-making system of contractor selection and an index weight-assessing system for sustainable development, this model will be widely applied and sustainably updated for other cases.

    摘 要 i Abstract iii 致 謝 v 目 錄 vii 符號索引表 x 圖目錄 xii 表目錄 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究範圍與限制 4 1.4 研究方法與流程 5 1.5 論文架構 6 第二章 文獻回顧與探討 9 2.1 多準則決策評選廠商之方法與應用 9 2.2 偏好關係理論(PREFERENCE RELATIONSHIPS THEORY) 15 2.2.1乘法偏好關係(multiplicative preference relation,MPR) 15 2.2.2模糊偏好關係(Fuzzy preference relation, FPR) 15 2.2.3一致性模糊偏好關係 16 2.3貝氏定理應用(BAYESIAN THEORY) 17 2.4展望理論介紹(PROSPECT THEORY) 18 2.4.1展望理論(Prospect theory;PT)與投資心理學 18 2.4.2累積展望理論(Cumulative Prospect Theory;CPT) 20 2.4.3複合型累積展望理論(Composite Cumulative Prospect Theory ; CCPT) 20 2.5 決策效用函數於工程招標之應用 21 2.6 國內捷運場站開發選商法令和執行現況 22 2.7 小結 25 第三章 評選廠商之影響因子與權重 26 3.1實現投標承諾之影響因子 26 3.1.1評選開發商之影響因子 26 3.1.2選商影響因子定義說明 30 3.2決定影響因子間相對權重 32 3.2.1定義評估相對權重之語意變數 32 3.2.2進行專家問卷調查 33 3.2.3建構乘積偏好關係MPR矩陣 34 3.2.4轉換MPR為模糊偏好關係FPR矩陣 35 3.2.5彙整與正規化FPR矩陣 35 3.2.6計算影響因子間之相對權重 36 3.3評估影響因子間之相對權重 36 3.3.1專家問卷調查之基本資料 36 3.3.2計算工期影響因子間之相對權重 37 3.3.3計算成本影響因子間之相對權重 39 3.3.4計算品質影響因子間之相對權重 40 第四章 建構貝氏模糊展望模式 41 4.1投標承諾實現可能性評估 42 4.2業主期望機率評估 46 4.2.1 決定事前機率權重函數 46 4.2.2 推導貝氏機率權重函數 47 4.3投標承諾對業主效用評估 50 4.3.1 決定模糊效用函數 51 4.3.2 評估投標承諾對業主的效用 54 4.4投標廠商整體展望值評估 59 4.4.1評估投標廠商整體展望值 59 4.4.2 評選最優開發廠商 60 第五章 案例分析與選商模式驗證 61 5.1招標前準備作業 61 5.1.1案例基本資料 62 5.1.2彙整投標廠商影響因子資料 63 5.1.3問卷設計與調查 67 5.2選商前置作業 68 5.2.1評估影響因子間相對權重 68 5.2.2決定機率權重函數 69 5.2.3決定決策效用函數 69 5.3投標廠商綜合評選 71 5.3.1 評估投標廠商實現投標承諾的可能性 71 5.3.2評估業主期望機率 78 5.3.3評估投標承諾對業主的效用分析 79 5.3.4 評估投標廠商整體展望值 85 5.3.5評選最優開發廠商 86 5.4相關選商模式結果比較 89 第六章 結論與建議 91 6.1 結論 91 6.2 建議 92 參考文獻 93 附錄一 推導貝氏機率分配計算過程 98 附錄二 捷運場站開發選商調查問卷 100 附錄三 投標廠商效用之差異度評估 119

    [1] Mardani,A.; Jusoh,A.; Nor,K.M.; Khalifah,Z.; Zakwan,N. ; Valipour,A. Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic research-ekonomska istrazivanja. 2015, 28(1), 510-571. [CrossRef]
    [2] Vinogradova,I.; Podvezko,V.; Zavadskas,E.K. The Recalculation of the Weights of Criteria in MCDM Methods Using the Bayes Approach. Symmetry. 2018, 10(6), 205.[CrossRef]
    [3] Topcu, V.I. A decision model proposal for construction contractor selection in Turkey. Building and Environment. 2004, 39, 469–481. [CrossRef]
    [4] Sergios, L. The use of time and cost utility for construction contract award under European Union Legislation. Building and Environment. 2007, 42, 452- 463. [CrossRef]
    [5] Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M. Some issues on consistency of fuzzy preference relations. European Journal of Operational Research. 2004, 154, 98-109. [CrossRef]
    [6] Cheng, M.Y. ; Tsai, H.C. ; Chuang ,K.H. Supporting international entry decisions for construction firms using fuzzy preference relations and cumulative prospect theory. Expert Systems with Applications. 2011, 38, 15151–15158. [CrossRef]
    [7] Bayes, T. An Essay towards solving a Problem in the Doctrine of Changes. Philos. Trans. R. Soc. Lond. 1763,53, pp.370–418.
    [8] Kirkwood, C.W. Notes on attitude toward risk taking and the exponential utility function. Department of Management Arizona State University Tempe. 1997, AZ 85287-4006,pp. 1-23.
    [9] Kahneman, D.; Smith, V. Foundations of Behavioral and Experimental Economics. Advanced information on the Prize in Economic Sciences, the Royal Swedish Academy, 17 December 2002, pp. 1-25.
    [10] Cheng Min-Yuan, Yeh Shu-Hua, and Chang Woei-Chyi, "Multi-Criteria Decision Making of Contractor Selection in Mass Rapid Transit Station Development Using Bayesian Fuzzy Prospect Model", Sustainability Vol. 12 (11) (2020) 4606. [CrossRef]
    [11] Cheng, M.Y.; Ko, C.H. Automated Safety Monitoring and Diagnosis System for Unstable Slopes. Computer-Aided Civil and Infrastructure Engineering. 2003, 18, 64–77. [CrossRef]
    [12] Laarhoven, P.J.; Pedrycz, M. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and System, 1983, 2, 229-241. [CrossRef]
    [13] Kahneman, D.; Tversky, A. On the psychology of prediction. The American Psychological Association. 1973, 80(4), 237-251.
    [14] Ali al-Nowaihi; Sanjit Dhami. Probability weighting functions. In: Wiley Encyclopaedia of Operations Research and Management Science.2011, pp. 1-42. [CrossRef]
    [15] Sergios, L., Objective Construction Contract Award using Cost, Time and Durability Utility, Procedia-Social and Behavioral Sciences 74(2013)123-133. [CrossRef]
    [16] 康尚德, 營建專案選擇總承包商之多準則展望模式, 國立臺灣科技大學營建工程系,博士論文, 2011.
    [17] Antoniou, F. ; Aretoulis, G. N. A multi-criteria decision-making support system for choice of method of compensation for highway construction contractors in Greece. International journal of construction management. 2019, 19(6), 492-508. [CrossRef]
    [18] Mardani, A.; Jusoh, A.; Halicka,K.; Ejdys,J. ; Magruk,A. ; Ahmad,U.N.U. Determining the utility in management by using multi-criteria decision support tools: a review. Economic research-ekonomska istrazivanja. 2018 ,31(1), 1666-1716. [CrossRef]
    [19] Ulubeyli, S.; Kazaz, A. Fuzzy Multi-criteria Mecision Making Model for Subcontractor Selection in International Construction Projects, TEDE. 2016, 22(2), 210-234. [CrossRef]
    [20] Pashaei, R.; Moghadam, A.S. Fuzzy AHP Method for Selection of a Suitable Seismic Retrofitting Alternative in Low-Rise Buildings. Civil engineering journal-tehran. 2018, 4(5), 1074-1086. [CrossRef]
    [21] Alpay, S.; Iphar, M. Equipment selection based on two different fuzzy multi criteria decision making methods Fuzzy TOPSIS and fuzzy VIKOR. open geosciences. 2018, 10(1), 661-677. [CrossRef]
    [22] Revie, M.; Bedford, T.; Walls, L. Supporting Reliability Decisions During Defense Procurement Using a Bayes Linear Methodology. IEEE transactions on engineering management. 2011, 58(4), 602-673. [CrossRef]
    [23] Turskis, Z.; Goranin, N.; Nurusheva, A.; Boranbayev,S. A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development. Sustainability. 2019, 11(2), 424. [CrossRef]
    [24] Liang, R.; Zhang, J.; Wu, C.Z.; Sheng, Z.H.; Wang, X.Y. Joint-Venture Contractor Selection Using Competitive and Collaborative Criteria with Uncertainty. journal of construction engineering and management. 2018, 145(2), 04018123. [CrossRef]
    [25] Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E. K.; Turskis, Z.; Antucheviciene, J. A Dynamic Fuzzy Approach Based on the EDAS Method for Multi-Criteria Subcontractor Evaluation. Information. 2018, 9(3), 68. [CrossRef]
    [26] Davoudabadi, R.; Mousavi, S.M.; Saparauskas, J. ; Gitinavard ,H. Solving construction project selection problem by a new uncertain weighting and ranking based on compromise solution with linear assignment approach. JCEM. 2019, 25(3), 241-251. [CrossRef]
    [27] Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Automation in construction. 2014, 45, 151-152. [CrossRef]
    [28] Ilce, A.C.; Ozkaya K. An integrated intelligent system for construction industry: A case study of raised floor material. Technological and Economic Development of Economy. 2018, 24(5), 1866-1884. [CrossRef]
    [29] Morkunaite, Z.; Bausys, R.; Zavadskas, E.K. Contractor Selection for Sgraffito Decoration of Cultural Heritage Buildings Using the WASPAS-SVNS Method. Sustainability. 2019, 11(22), 6444. [CrossRef]
    [30] Hasnain, M.; Thaheem, M.J.; Ullah, F. Best Value Contractor Selection in Road Construction Projects: ANP-Based Decision Support System. International journal of civil engineering. 2018, 16, 695-714. [CrossRef]
    [31] Stanujkic, D. ; Zavadskas, E. K.; Liu, S. ; Karabasevic, D. ; Popovic, G. Improved OCRA Method Based on the Use of Interval Grey Numbers. Journal of grey system. 2017, 29(4), 49-60. [CrossRef]
    [32] Khanzadi, M.; Turskis, Z.; Amiri, G.G.; Chalekaee, A. A model of discrete zero-sum two-person matrix games with grey numbers to solve dispute resolution problems in construction.Journal of Civil Engineering and Management. 2017, 23(6), 824-835. [CrossRef]
    [33] Cao, Q.; Esangbedo, M.O.; Bai, S.; Esangbed, C.O. Grey SWARA-FUCOM Weighting Method for Contractor Selection MCDM Problem: A Case Study of Floating Solar Panel Energy System Installation .Energies. 2019, 12(13), 2481. [CrossRef]
    [34] Morkunaite, Z.; Podvezko, V.; Zavadskas, E.K.; Bausys, R. Contractor selection for renovation of cultural heritage buildings by PROMETHEE method. Archives of Civil and Mechanical Engineering.2019, 19(4), 1056-1071. [CrossRef]
    [35] Gunduz, M.; Alfar, M. Integration of Innovation through Analytical Hierarchy Process (AHP) in Project Management and Planning. Technological and Economic Development of Economy. 2019, 25(2), 258-276. [CrossRef]
    [36] Mokhtariani, M.; Sebt, M.H.; Davoudpour, H. Construction Marketing: Developing a Reference Framework. Advances in civil engineering. 2017, 7548905. [CrossRef]
    [37] Ferrieia, J.; Pinheiro, M.D.; Brito J.D. Refurbishment decision support tools: A review from a Portuguese user’s perspective. Construction & building technology. 2013, 49, 425-447. [CrossRef]
    [38] Aladag, H.; Isik, Z. The Effect of Stakeholder-Associated Risks in Mega-Engineering Projects: A Case Study of a PPP Airport Project. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT.2020, 67, 1, 174-186.
    [39] Mahamadu, A.M.; Manu,P.; Mahdjoubi,L. ; Booth,C.; Aigbavboa, C.; Abanda, F.H. The importance of BIM capability assessment: An evaluation of post-selection performance of organizations on construction projects. ECAM. 2020,27,1, 24-48. [CrossRef]
    [40] Ye, K.H.; Zeng, D.; Wong, J. Competition rule of the multi-criteria approach: what contractors in China really want? Journal of Civil Engineering and Management. 2018, 24(2), 155-166. [CrossRef]
    [41] Ortiz, O.I.; Pellicer, E.; Molenaar, K.R. Management of time and cost contingencies in construction projects: a contractor perspective. Journal of Civil Engineering and Management.2018, 24(3), 254-264. [CrossRef]
    [42] Cheng, M.Y. ; Kang, S.T. Integrated fuzzy preference relations with decision utilities for construction contractor selection. Journal of the Chinese Institute of Engineers. 2012, 35(8), 1051-1063. [CrossRef]
    [43] Koc, K.; Gurgun, A.P. Contractor prequalification for green buildings—evidence from Turkey. Engineering, Construction and Architectural Management. 2020. [CrossRef]
    [44] Zhang, Y. Construction of Bid Evaluation Index System in Government Public Project Green Procurement in China Based on D-S Evidence Theory. Sustainability . 2020, 12,651. [CrossRef]
    [45] Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the AHP. RWS Publications, Pittsburgh, U.S.A, 2000, pp. 15-35.
    [46] Tanino, T. Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems. 1984, 12, 117–131. [CrossRef]
    [47] Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic Publishers, Dordrecht,2000,pp.5-21. [CrossRef]
    [48] Chiclana, F.; Herrera, F.; Herrera-Viedma, E. Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets and Systems .1998, 97, 33–48. [CrossRef]
    [49] Tanino, T. Fuzzy preference relations in group decision making, in: J. Kacprzyk, M. Roubens (Eds.), Non-Conventional Preference Relations in Decision Making. Springer-Verlag, Berlin,1988, pp. 54–71.
    [50] Ng, S.T.; Skitmore, R.M. Client and consultant perspectives of prequalification criteria. Building and Environment. 1999, 34, 607–621.
    [51] Le´sniak, A.; Janowiec, F. Risk Assessment of Additional Works in Railway Construction Investments Using the Bayes Network. Sustainability. 2019, 11, 5388, 1-15. [CrossRef]
    [52] Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica. 1979, 47, 263-291. [CrossRef]
    [53] Tversky, A.; Kahneman, D. Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty. 1992, 5, 297-323. [CrossRef]
    [54] Prelec, D. The probability weighting function. Econometrica, New York.1998, 66, pp. 497–527.
    [55] Alzober, W.; Yaakub, A.R. Integrated Model for Selection the Prequalification Criteria of Contractor. Lecture Notes on Software Engineering. 2014, 2(3), 233-237. [CrossRef]
    [56] Chiang, F.Y.; Yu, V.F.; Luarn, P. Construction Contractor Selection in Taiwan Using AHP. International Journal of Engineering and Technology. 2017, 9(3), 211-215. [CrossRef]
    [57] Ling, F.Y. Y. Key determinants of performance of design-bid-build projects in Singapore. Building Research and Information. 2004, 32(2), 128–139. [CrossRef]
    [58] Best, R.; Langston, C. Evaluation of construction contractor performance: A critical analysis of some recent research. Construction Management and Economics. 2006, 24(9), 439-445. [CrossRef]
    [59] Weber, C.A. ; Current, J. R. ; Benton, W. C. Vendor selection criteria and methods. European Journal of Operational Research, Elsevier. 1991, 50(1), 2-18. [CrossRef]
    [60] Dickson, G.W. An Analysis Of Vendor Selection Systems And Decisions. Journal of Supply Chain management. 1966, 2(1), 5-17. [CrossRef]
    [61] Choi, T. ; Hartley, J.L. An exploration of supplier selection practices across the supply chain. Journal of Operations Management. 1996, 14(4), 333-343 . [CrossRef]
    [62] Hsu, C.H.; Liang, G.S. Constructing Performance Evaluation Model of Suppliers’ Purchase in Green Supply Chain .Maritime Quarterly. 2011, 20 (2), 71–84.
    [63] Ebrahimi, A.; Alimohammadlou, M.; Mohammadi, S. Identification and prioritization of effective factors in assessment and ranking of contractors using fuzzy multi-criteria techniques. Decision Science Letters. 2016, 5, 95–108. [CrossRef]
    [64] Oyatoye, E.O.; Odulana, A.A. A Prototype AHP System for Contractor Selection Decision. Data analytics for audit. 31 August 2016. [CrossRef]
    [65] Morkunaite, Z.; Podvezko, V. Criteria Evaluation for Contractor Selection in Cultural Heritage Projects Using Multiple Criteria Approach. In proceedings of the 17th International Colloquium on Sustainable Decisions in Built Environment, Lithuania Vilnius Gediminas Technical University, 15 May 2019. [CrossRef]
    [66] Chiclana, F.; Herrera, F.; Herrera, V.E. Integrating multiplicative preference relations in a multipurpose decision making model based on fuzzy preference relations. Fuzzy Sets and Systems. 2001, 112(2), 277–291. [CrossRef]
    [67] Wang, T.H.; Chang, T.H. Forecasting the Probability of Successful Knowledge Management by Consistent Fuzzy Preference Relations. Expert systems with Applications. 2007, 32, 801-813. [CrossRef]
    [68] Patiniotakis, I.; Apostolou, D.; Mentzas, G. Fuzzy UTASTAR: A method for discovering utility functions from fuzzy data. Expert System with Applications. 2011, 38, 15463-15474. [CrossRef]
    [69] Cheng, M.Y.; Hsiang, C.L. Bidding Decision Model Based on Prospect Theory and Game Theory. Advanced Materials Research. 2013, 723, 951-959.[CrossRef]
    [70] 項家騏, 展望賽局理論決策模式之研究—以高科技廠房競標決策為例, 國立臺灣科技大學營建工程系,博士論文, 2011.

    QR CODE