簡易檢索 / 詳目顯示

研究生: 賴柏丞
Pao-chen Lai
論文名稱: 聚醯亞胺基板應用於可撓式有機發光二極體
Using Polyimide As The Component In The Manufacture Of Substrate For Organic Light Emitting Diode
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 有機發光二極體元件可撓式聚醯亞胺上發光元件
外文關鍵詞: OLED, flexible, polyimide, TOLED
相關次數: 點閱:197下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

論文是以可撓式的概念,利用聚醯亞胺(polyimide;PI)作為可撓式的基板製作有機發光二極體(Organic light emitting diode;OLED)元件。由於PI有優異的可加工溫度,能耐300℃以上的高溫,能克服氧化銦錫(Indium Tin Oxide;ITO)的高溫製程環境。本論文實驗主軸主要分為:(Ⅰ)可撓式下發光有機二極體元件(bottom emitting oled device;BOLED)。此部分針對可撓基板可以應用於下發光元件,使可撓式基板的效率能與玻璃基板相同,之後,更進一步地藉由混摻二氧化矽或二氧化鈦於聚醯亞胺中,調整基板折射率(Refractive index)提高元件的出光(light coupling)進而提升元件的效率。(Ⅱ)可撓式上發光有機二極體元件(top emitting oled device;TOLED)。以文獻探討做為參考,從多種材料中選取了上發光元件陽極與電洞注入層(Hole injection layer),接著對上發光元件最重要的透明電極進行一系列的測試與,再將電洞傳輸層的膜厚最佳化使微共振腔效應達到最大化,進而提升元件效率。最後再將有機上發光元件應用於聚醯亞胺基板上,並達成高效率可撓式有機二極體元件的目標。


With the flexible concept, this research uses polyimide (PI) as the component in the manufacture of substrate for Organic Light Emitting Diode (OLED). As PI features excellent processing temperature and resists a high temperature of over 300℃, enabling to overcome the manufacturing environment of Indium Tin Oxide (ITO).The Laboratory has not yet developed any flexible devices in the past. The experiment is divided into two parts: (I) bottom emitting oled device (BOLED). In this part, the flexible substrate is applied in BOLED and its refractive index can be further adjusted, enhancing the lighting coupling and efficiency of components.
(II) top emitting oled device (TOLED). Based on research documents and discussions, the hole injection layer in TOLED is chosen, plus the use of transparent cathode, the most important of its kind from multiple materials. Microcavity has to reaches its maximum status to ensure the efficiency. Thus, such components can be used in PI substrate and emulate the same lighting efficiency as that of glass substrates.

總目錄 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 總目錄 iv 圖目錄 viii 表目錄 xii Chapter 1 緒論 1 1.1 前言 1 1.2 有機發光二極體的發展與歷史沿革 3 1.3 發光原理與機制 6 1.4 基本結構 9 1.5 有機發光二極體元件材料介紹 12 1.5.1 陽極材料 12 1.5.2 電洞注入材料 13 1.5.3 電洞傳輸材料 14 1.5.4 電子傳輸材料 15 1.5.5 電子注入材料 16 1.5.6 陰極材料 16 1.6 聚醯亞胺的背景及特色 17 1.7 研究動機 20 Chapter 2 理論基礎 22 2.1 有機半導體傳輸機制 22 2.2 有機材料的吸收與放射 24 2.3 主、客摻雜系統之發光原理 27 2.4 有機發光二極體的效率 28 2.5 濃度淬熄效應 31 2.6 微共振腔效應 32 Chapter 3 實驗流程與設備 34 3.1 實驗材料 34 3.1.1 基板 34 3.1.2 藥品 34 3.2 實驗設備 36 3.2.1 超音波清洗機 36 3.2.2 加熱板 37 3.2.3 旋轉塗佈機 37 3.2.4 紫外光曝光機 38 3.2.5 氧氣電漿清潔機 38 3.2.6 手套箱 39 3.2.7 機械手臂傳遞腔 40 3.2.8 熱蒸鍍機 41 3.2.9 濺鍍機 42 3.2.10 膜厚量測系統 (α-Step ) 43 3.2.11 光電子光譜儀 (AC-2) 43 3.2.12 光電特性BJV量測系統 43 3.3 實驗步驟 44 3.3.1 ITO玻璃圖案化 44 3.3.2 ITO玻璃基板前處理 48 3.3.3 有機材料與金屬電極蒸鍍 48 3.3.4 元件封裝 50 Chapter 4 結果與討論 51 4.1 可撓式下發光有機二極體元件 51 4.1.1 穿透式陽極最佳化製程 51 4.1.2 聚醯亞胺未混摻基板 53 4.1.3 聚醯亞胺混摻基板 61 4.2 可撓式上發光有基二極體元件 66 4.2.1 上發光元件陽極與電洞注入層 67 4.2.2 上發光元件穿透式陰極 70 4.2.3 最佳化電洞傳輸層膜厚 73 4.2.4 可撓式上發光元件 76 Chapter 5 結論 79 參考文獻 81

參考文獻
[1] http://www.lg.com/tw
[2] http://www.osram.tw/osram_tw/
[3] http://www.ge.com/tw/
[4] M. Pope, H. P. Kallmann and P. Magnante, "Electroluminescence in Organic Crystals," J. Chem. Phys., 38, 2042 (1963).
[5] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett., 51, 913 (1987).
[6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks and K. Mackay, "Light-emitting diodes based on conjugated polymers," Nature, 347, 539 (1990)
[7] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," Thin Solid Films, 94, 171 (1982).
[8] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, "Organic Electroluminescent Device with a Three-Layer Structure," Jpn. J. Appl. Phys., 27, L713 (1988).
[9] M. Era, C. Adachi, T. Tsutsui and S. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," Chem. Phys. Lett., 178, 488 (1991).
[10] J. Kido, M. Kohda, K. Okuyama and K. Nagai, "Organic electroluminescent devices based on molecularly doped polymers," Appl. Phys. Lett., 61, 761 (1992).
[11] J. Kido, M. Kimura and K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device," Science, 267, 1332 (1995).
[12] J. Kido, H. Shionoya and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett., 67, 2281 (1995).
[13] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials," Appl. Phys. Lett., 79, 2082 (2001).
[14] T. Ishida, H. Kobayashi and Y. Nakato, "Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements," J. Appl. Phys., 73, 4344 (1993).
[15] S. A. Van Slyke, C. H. Chen and C. W. Tang, "Organic electroluminescent devices with improved stability," Appl. Phys. Lett., 69, 2160 (1996).
[16] 金進興, "軟性電路板材料全書," (2007).
[17] M. T. Bogert and R. R. Renshaw, "4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIVATIVES," J. Am. Chem. Soc., 30, 1135 (1908).
[18] W. M. Edwards and I. M. Robinson, "POLYIMIDES OF PYROMELLTIC ACID," U.S. Patent 2710853 (1955).
[19] A. L. Endrey, "PROCESS FOR PREPARING POLYIMIDES BY TREATING POLYAMIDE-ACIDS WITH LOWER FATTY MONOCARBOXYLIC ACID ANHYDRIDES," U.S. Patent, 3179630 (1965).
[20] S. V. Vinogradova, Y. S. Vygodskii, and V. V. Korshak, " Some features of the synthesis of polyimides by single-stage high-temperature polycyclization" Polym. Sci. U.S.S.R., 12, 2254. (1970).
[21] M. Hasegawa, K. Horie, "Photophysics, photochemistry, and optical properties of polyimides" Prog. Polym. Sci., 26 259. (2001).
[22] M. Bender, J. Trube and J. Stollenwerk, " Characterization of a RF/dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films " Appl. Phys. A., 69 397 (1997).
[23] T. Futagami, Y. Shigesato and T. Yasui, " Characterization of RF-Enhanced DC Sputtering to Deposit Tin-Doped Indium Oxide Thin Films " J. Appl. Phys. Part 1, 37, 6210 (1998).
[24] F. O. Adurodija, H. Izumi and T. Ishihar, " Highly conducting indium tin oxide (ITO) thin films deposited by pulsed laser ablation" Thin Solid Films, 350, 79, (1999).
[25] H.J. Kim, J.W. Bae and J.S. Kim, "Properties of amorphous tin-doped indium oxide thin films deposited by O2/Ar mixture ion beam-assisted system at room temperature" Surf. Coat. Technol., 131, 201 (2000).
[26] Jiro Matsuo, Hiroshi Katsumata and Eiji Minami, "O2 cluster ion-assisted deposition for tin-doped indium oxide films" Methods Phys. Res. B, 161, 952 (2000).
[27] W. D. Gill, "Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole," J. Appl. Phys., 43, 5033 (1972).
[28] R. M. Glaeser and R. S. Berry, "Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models," J. Chem. Phys., 44, 3797 (1966).
[29] E. Pinotti, A. Sassella, A. Borghesi and R. Tubino, "Electrical characterization of organic semiconductors by transient current methods," Synth. Metals, 122, 169 (2001).
[30] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," J. Appl. Phys., 90, 5048 (2001).
[31] N. Takada, T. Tsutsui and S. Saito, "Control of emission characteristics in organic thin‐film electroluminescent diodes using an optical‐microcavity structure" Appl. Phys. Lett., 63, 2032 (1993).
[32] C. Weisbuch, M. Nishioka, A. Ishikawa and Y. Arakawa, " Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity" Phys. Rev. Lett,. 69, 3314 (1992).
[33] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher and J. M. Phillips, " Physics and applications of organic microcavity light emitting diodes " J. Appl. Phys., 80, 6954 (1996).
[34] 黃孝文 and 陳金鑫, "有機電激發光材料與元件," (2005).
[35] S. Seki, Y. Sawada and T. Nishide, "Indium–tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride" Thin Solid Films, 388, 22 (2001).
[36] M.A. Martinez, J. Herrero and M.T. Gutierrez, "Optimisation of indium tin oxide thin films for photovoltaic applications" Thin Solid Films, 269, 80 (1995).
[37] N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara and H. Nanto, "Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium–tin–oxide films" J. Vac. Sci. Technol. A, 19, 1636 (2001).
[38] S. Mladenovski, K. Neyts, D. Pavicic A. Werner and Carsten Rothe, "Exceptionally efficient organic light emitting devices using high refractive index substrates" Opt. Express, 17, 7562 (2009).
[39] C. Shufen, D. Lingling, X. Jun, P. Ling, X. Linghai, F. Quli Fan and H. Wei, "Recent Developments in Top-Emitting OrganicLight-Emitting Diodes" Adv. Mater, 22, 5227 (2010).
[40] S. Hofmann, M. Thomschke, B. Lussem and K. Leo, "Top-emitting organic light-emitting diodes" OPTICS EXPRESS, 19, 1250, (2011).
[41] C. C. Chang,M. T. Hsiehand J. F. Chen, "Highly power efficient organic light-emitting diodes with a p-doping layer" Appl. Phys. Lett., 89, 253504, (2006).
[42] J.W. Ma, Z. Liang, C. Jin, X.Y. Jiang and Z.L. Zhanga, "Enhanced power efficiency for white OLED with MoO3 as hole injection layer andoptimized charge balance" Solid State Communications, 149, 214, (2009).
[43] K. Y. Wu, S. Y. Yu and Y. T. Tao "Continuous Modulation of Electrode Work Function with Mixed Self-Assembled Monolayers and Its Effect in Charge Injection" Langmuir 25 6232 (2009).
[44] K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H. W. Choi, N. Y. Lee, Y. H. Tak and J. L. Lee, "Optical Properties of WO3/Ag/WO3 Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes" J. Phys. Chem. C, 115, 3453, (2011).
[45] W. Ji, J. Zhao, Z. Sun and W. Xie, "High-color-rendering flexible top-emitting warm-white organic light emitting diode with a transparent multilayer cathode" Organic Electronics, 12, 1137, (2011).
[46] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu and C. C. Wu, "Top-emitting organic light-emitting devices using surface-modified Ag anode" Appl. Phys. Lett., 83, 5127, (2003).
[47] P. K. Raychaudhuri, J. K. Madathil, J. D. Shore and S. A. Van Slyke, "Performance enhancement of top- and bottom-emitting organic light-emitting devices using microcavity structures" Journal of the SID, 12, 315, (2004).

QR CODE