簡易檢索 / 詳目顯示

研究生: 謝玉萍
Yu-ping Hsieh
論文名稱: Sn、Sn-3.0Ag-0.5Cu、Sn-9.0Zn無鉛銲料與Alloy42基材界面反應
Interfacial Reactions of Pure Sn, Sn-3.0Ag-0.5Cu and Sn-9.0Zn Lead-free Solders with the Fe-42Ni Substrate
指導教授: 顏怡文
Yee-wen Yen
口試委員: 周賢鎧
Shyan-kay Jou
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 無鉛銲料鐵鎳合金介金屬化合物擴散控制
外文關鍵詞: Sn-3.0Ag-0.5Cu solder, Alloy 42, intermrtallic compound (IMC), diffusion-controlled
相關次數: 點閱:238下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於歐盟制定規範限制了電子電器產品中鉛的含量,且傳統電子構裝銲接中所使用的銲料主要為錫鉛合金,因此開始了無鉛銲料的研發。Fe-42wt% Ni (Alloy 42),因其具有優異機械性質與矽基材相近之熱膨脹係數,在工業上通常被使用做為導線架材料。目前文獻上有關無鉛銲料與Alloy 42的界面反應相關研究甚少。本研究將針對純Sn、Sn-3.5Ag-0.5Cu (SAC)及Sn-9.0Zn (SZ)三種合金與Fe-42wt% Ni基材反應在240、255與270℃下,反應1、2、3、4、5、15與50小時後之液/固界面反應,觀察其界面生成形態、介金屬生成相 (IMC)、探討反應機制、IMC成長速率常數與反應活化能。
實驗結果顯示,純Sn銲料與Alloy 42於界面產生二種不同形態之介金屬相,皆為FeSn2相;其中近基材FeSn2相為連續層;靠近銲料則為不連續的FeSn2相,其形態為針狀及塊狀。SAC銲料與Alloy 42反應界面產生一連續(Fe,Ni)Sn2相。SZ與Alloy 42反應界面生成(Ni,Fe)5Zn21。三個系統之介金屬相厚度隨著反應時間增加與溫度增加而呈現兩段式增厚現象。反應1到5小時呈一線性情形其增厚速率較快且反應遵守拋物線定律;反應5到50小時其反應轉變為熟化現象,呈現另一線性情形且增厚速率明顯減緩,兩線性之厚度與時間的平方根皆成正比,為熱活化現象。


Sn-Pb solders are forbidden in using in electronic products owing to an environmental issue, Pb-free solders have attracted much attention to replace the conventional Sn-Pb solders. The most popular kind of lead-free solders are Sn, Sn-3.0Ag-0.5Cu, Sn-0.7Cu, Sn-58Bi and Sn-9Zn (in wt %). The Fe-42wt%Ni alloy is usually called a 42 invar alloy (Alloy 42). It has been used as an excellent electrode substrate or leads because its coefficient of thermal expansion is much closer to Si devices than those of Cu or Ni. However, the interfacial reaction between solders and Alloy 42 has rarely been studied.
This study is to investigate the interfacial reaction between pure Sn, Sn-3.0 wt% Ag-0.5 wt% Cu,Sn-9.0 wt%Zn and alloy42 at 240, 255 and 270 oC for various reaction times. The surface morphology and IMC formation are examined as well.
The experimental results indicated that two internetallic compounds (IMCs) with different surface morphologies were observed in the Sn/Alloy42 couple. However, both they were the FeSn2 phases. In the SAC/Alloy 42 couples, only the (Fe,Ni)Sn2 phase was formed at the interface. Three layers structure of IMCs were observed in the SZ/Alloy 42 couples and they were the (Ni,Fe)5Zn21 phases. Two stages of IMC thickness change were found in three couples. The IMC thickness in these couples increased as increasing reaction times and temperatures, and it was proportional to the square root of reaction time. The interfacial reaction mechanism of them was diffusion controlled.

中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 第二章 文獻回顧 3 2-1電子構裝 3 2-2無鉛銲料 4 2-2.1 純錫 4 2-2.2 錫-銀-銅合金 6 2-2.3 錫-鋅合金 8 2-3界面反應與擴散理論 10 2-3.1界面反應 10 2-3.2擴散理論 12 2.4界面反應相關文獻 14 2-4.1純錫/ Ni之界面反應 14 2-4.2純錫/Alloy42之界面反應 15 2-4.3錫-銀-銅/Alloy42之界面反應 17 2-4.4錫-鋅/Alloy42之界面反應 18 2-4.5其他 19 第三章 實驗方法 23 3.1 鐵-鎳基材製備 23 3.2 銲錫合金製備 23 3.3 反應偶製備 23 3.4 金相處理 24 3.5 試片分析 25 第四章 結果與討論 28 4.1 Sn銲料與Alloy42基材反應偶 28 4-1.1 Sn/Alloy42反應偶之界面反應 28 4-1.2 Sn/Alloy42反應偶之蝕刻形態 34 4-2 SAC銲料與Alloy42基材反應偶 41 4-2.1 SAC/Alloy42反應偶之界面反應 41 4-2.2 SAC/Alloy42反應偶之蝕刻形態 47 4-3 SZ銲料與Alloy42基材反應偶 52 4-3.1 SZ/Alloy42反應偶之界面反應 52 4-3.2 SZ/Alloy42反應偶之蝕刻形態 58 4-4剝離機制 62 4-5 Solder與Alloy42基材反應偶之界面反應動力學 63 第五章 結論 71 第六章 參考文獻 73 附錄(A) 78

1. “WEEE Regulations”EU-Directive 96/EC (2002)
2. “RoHS Regulations”EU-Directive 95/EC (2002)
3. C. Y. Lee, J. W. Yoon, Y. J. Kim, S. B. Jung, “Interfacial reactions and joint reliability of Sn-9Zn solder on Cu or electrolytic Au/Ni/Cu BGA substrate” , Microelectronic Engineering, vol. 82, pp. 561-568 (2005).
4. 陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立 (2005)
5. I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, (1987).
6. M. Abtew, and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering, vol. 27, pp. 95-141 (2000).
7. S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Creep properties of Sn-Ag solder joints containing intermetallic particles”, JOM, vol. 53, pp. 22-26 (2001).
8. K. N. Tu, J. C. M. Li, “Spontaneous whisker growth on lead-freesolder finishes”, Materials Chemistry and Physics, vol. 409, pp.131-139 (2005).
9. W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R.S.Celestre, A. A. MacDowell, Y. Y, Bong. L. Nguyen, T. T. Sheng George, “Structure and kinetics of Sn whisker growth on Pb-free solder finish”, Electronic Components and Technology Conference, pp.628-633 (2002).
10. 邱政男,“錫-銀-銅-鎳四元系統等溫相平衡與液相線投影圖”,碩士論文 (2005)
11. 劉雨雯,“RoSH綠色指令:全球環境規範&無鉛銲接技術”,龍璟文化 (2005)
12. Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM international, Materials Park (1985).
13. M. McCormack, and S. Jin, “Progress in the design of new lead-freesolders”, JOM, vol. 45 , pp. 36-40 (1993).
14. S. Vaynman and M. E. Fine, “Development of flux for lead-freesolders contain zinc”, Scripta Materialia, vol. 41, pp. 1269-1271 (1999).
15. A. W. Hofmann, B. J. Giletti, H. S. Yoder, R. A. Yund, “Geochemical transport and kinetics”, Carnegie institution of washington, 1973.
16. P. Nash and A. Nash, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM international, Materials Park (1991)
17. D. Gur and M. Bamberger, “Reactive isothermal solidification in the Ni-Sn system ”, Acta Materialia, vol. 46, pp. 4917-4923 (1998).
18. M. Mita, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures”, Materials Science and Engineering, vol. 430, pp.269-275 (2005).
19. S. K. Kang and V. Ramachandran , “Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface”, Scripta Metall., vol. 14, pp. 421-424 (1980).
20. S. W. Chen, C. M. Chen and W. C. Liu, “Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions”, Journal of Electronic Materials, vol. 27, pp. 1193-1198 (1998).
21. W. J. Tomlinson and H. G. Rhodes, “Kinetics of intermetallic compound growth between nickel, electroless Ni-P, electroless Ni-B and tin at 453 to 493 K”, Journal of Materials Science, vol. 22, pp. 1769-1772 (1987).
22. H. Okamoto, in “Binary Alloy Phase Diagrams”, edited by T. B. Massalski, ASM international, Materials Park, vol. 3, pp. 1774-1776 (1990).
23. C Hwang and K. Suganuma, “Interface microstructure between Fe-42Ni alloy and pure Sn”, Journal of Material Research Society, vol. 18, pp. 1202-1210 (2003).
24. Y. W. Yen, W. T. Chou, Z. M. Chen, C. P. Lee, M. K. Huang, “The Phase equilibria of the Sn-Fe-Ni Ternary System and Interfacial Reactions between Fe-42Ni alloy and pure Sn at 270℃”, unpublished work.
25. J. Liang and N. Dariavach, “Metallurgy and Kinetics of Liquid-Solid Interfacial Reaction during Lead-Free Soldering”, Material Transactions, vol. 47, pp. 317-325 (2006)
26. N. Dariavach, P. Callahan, J. Liang, and R. Fournelle “Intermetallic Growth Kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu Lead-Free Solders on Cu, Ni, and Fe-42Ni Substrates”, Journal of Electronic Materials, vol. 35, No. 7, pp. 1581-1592 (2006)
27. C. W. Hwang and K. Suganuma “Effect of Cu Addition to Sn-Ag Lead-Free Solder on Interfacial Stability with Fe-42Ni”, Material Transactions, vol. 45, pp. 714-720 (2004)
28. P. Nash, and Y. Y. Pan, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM international, Materials Park (1991).
29. Y. W. Yen, W. K. Liou, “Effect of Cu Addition on Interfacial Reaction between Sn-9Zn Lead-Free Solder and Ni Substrate”, Journal of Materials Research, vol. 22, pp. 2663-2667 (2007).
30. X. F. Zhang, J. D. Guo, J. K. Shang, “Growth kinetics of intermetallic compounds between Sn-9Zn solder and electroplated Fe-42Ni metallization”, Journal of Alloys and Compounds, vol. 487, pp. 776-780 (2009).
31. C.Y. Lee, J.W. Yoon, Y.J. Kim, and S.B. Jung, “Interfacial reactions and joint reliability of Sn-9Zn solder on Cu or electrolytic Au/Ni/Cu BGA ”, Microelectronic Engineering, vol. 82, pp.561-568 (2005).
32. C. Y. Chou, S. W. Chen, Y. S. Chang, “Interfacial reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni couples”, Journal of Materials Research, vol. 21, pp. 1849-1856 (2006)
33. N. Y. Tang, X. Su and X. B. Yu, “A Study of Zn-Rich Corner of the Zn-Fe-Sn System”, Journal of Phase Equilibria, vol. 24, pp. 528-532 (2003)
34. A. A. Liu, H. K. Kim, K. N. Tu, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, Journal of Electronic Materials, vol. 32, pp. 1214-1221 (2003)
35. H. K. Kim, K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening”, Phys. Rev, vol. 53, pp. 16027-16034 (1996)

QR CODE