簡易檢索 / 詳目顯示

研究生: 陳在威
Tzai-Wei Chen
論文名稱: SnS2, GaxSb(1-x)及 SnS 奈米材料合成與光電性質研究
Syntheses and Optoelectrical Properties of SnS2,GaxSb(1-x), and SnS Nanomaterials
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 蔡孟霖
MENG-LIN TSAI
周賢鎧
SHIAN-KAI JOU
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 195
中文關鍵詞: 奈米片奈米線光感測器金屬氧化物半導體場效電晶體
外文關鍵詞: nanoflakes, nanowires, photodetectors, MOSFETs
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究內容分為三大部分:SnS2奈米片的成長與結構分析及退火前後電性變化及退火參數的討論。第二部分為不同組份的GaSb奈米線之製備與結構分析、探討退火對於異質結構的擴散情形及黃光製程上對應的量測結果與狀況。第三部分為SnS奈米線之製備與結構分析及其光電性質、退火參數之結果與討論。
第一部份,SnS2奈米片使用S和SnI2粉末透過化學氣相傳輸(CVT)方法成長,利用電子束微影製程及蒸鍍系統製備元件,對元件進行變溫實驗以計算出實際量測的蕭特基能障,並與理論值進行對比,實際值約為0.258 ± 0.034 eV,仍與理論值的0.34 eV有著很大的誤差,此結果與材料的厚度、形貌以及電極接觸界面有著很大的關連。另外,對材料進行不同快速熱退火 (RTA) 條件的試驗,讓鎳擴散進入材料中並形成組份不同的異質結構,探討退火熱處理對於材料結構改變及電流的貢獻,其中在350度15秒的條件中鎳原子部份擴散進入材料形成異質結構,且發現材料仍保持半導體特性並且電流具有明顯提升。
第二部分,GaSb奈米線透過陽極氧化鋁(AAO)模板搭配真空壓鑄系統成功製備出,並且透過組份中的高度可調控性,成功製備出Ga:Sb = 1:1和Ga:Sb = 7:3莫耳比的GaSb奈米線。另外,透過對於Ga0.7Sb0.3進行不同條件之退火熱處理,在奈米線中發現不同組份的異質結構,其中包含了Ga-rich和Sb-rich組份,對比不同退火條件的linescan結果,在400度12小時的退火條件下Ga和Sb擴散的情況明顯更激烈,有著更高的Sb組份以及更緊密的異質結構。透過電子束微影製程及蒸鍍系統製備出GaSb奈米線光感測器,在650 nm雷射之激發下,表現出7.24×104 A/W之responsivity、1.38×107 % 之EQE以及1.28×1013 Jones之detectivity。Ga0.7Sb0.3奈米線元件製備,透過黃光微影製程及蒸鍍系統。元件的SEM影像中明顯可看出奈米線與某物質發生反應導致不連續的情況,透過實驗推測Ga0.7Sb0.3奈米線異質結構中之Sb-rich組份會與黃光顯影液(鹼性)發生反應,直接導致了電性量測結果中的低電流。
第三部分,SnS奈米線透過AAO模板輔助真空壓鑄系統被成功製備,因為其化學穩定性高,在黃光元件製備與蝕刻過程上並未出現材料表面受到反應的情形,透過405 nm、450 nm、520 nm、650 nm以及780 nm雷射之激發下,可在520 nm得到4.2×104 A/W之光響應、9.8×106 %之外部量子轉換效率以及 4.38×1013 Jones之比探針率,並且有著29 ms和31.04 ms的上升和下降時間。另外,SnS奈米線在金屬氧化物半導體場效電晶體(MOSFET)的量測中,在Vd=1.0 V,Vg= -10‒40 V下得到1.23×10-9 S的transconductance以及0.831 cm2/V⋅s的載子遷移率。為了確認SnS奈米線在酸鹼溶液中蝕刻的反應性,採用2 M NaOH蝕刻與H2Cr2O7溶液對SnS (Sn3S4)塊材進行蝕刻,蝕刻後的SEM影像與EDS分析都證實SnS(Sn3S4)有著高化學穩定性,並沒有受到蝕刻液影響而改變組份。


The research can be divided into three parts: the growth and structural analysis of SnS2 nanoflakes, the characterization of electrical properties before and after annealing, and discussions on annealing conditions. The second part involves the preparation and structural analysis of different compositions of GaSb nanowires, investigating the diffusion of heterostructures under annealing conditions, and corresponding electrical measurements via photolithography processes. The third part focuses on the preparation, structural analysis, optoelectronic properties measurement, and annealing conditions of SnS nanowires.
In the first part, SnS2 nanoflakes were grown using S and SnI2 powder via chemical vapor transport (CVT) method. E-beam lithography and thermal evaporation were employed to fabricate electronic devices. Varied temperature test was conducted to calculate the actual measured Schottky barrier height of 0.258 ± 0.034 eV compared to the theoretical value of 0.34 eV. This discrepancy was found to be associated with material thickness, morphology, and electrode contact interface. Additionally, rapid thermal annealing (RTA) experiments were conducted under various conditions to facilitate Ni diffusion into the material, forming heterostructures. Notably, at 350 °C for 15 s, Ni atoms partially diffused into the material, forming heterostructures. The material maintained its semiconductor properties, exhibiting significantly improved electrical currents.
In the second part, GaSb nanowires were successfully prepared using anodic aluminum oxide (AAO) template-assisted vacuum die-casting, allowing high adjustability of composition within the nanowires. Ga:Sb ratios of 1:1 and 7:3 were achieved. Different annealing conditions on Ga0.7Sb0.3 nanowires revealed heterogeneous structures with Ga-rich and Sb-rich compositions. Linescan analysis showed intense Ga and Sb diffusion at 400 °C for 12 hr annealing condition, resulting in higher Sb composition and denser heterostructures. GaSb nanowire photodetectors exhibited R= 7.24×104 A/W, EQE=1.38×107 %, and D*= 1.28×1013 Jones at 650 nm laser exposure. In the Ga0.7Sb0.3 NWs PHL device, revealed discontinuities caused by reactions with certain substances. Experimental evidence confirmed reactions between Sb-rich components in Ga0.7Sb0.3 nanowire heterostructures and alkaline developer, leading to decreased electrical performance.
The third part involved the successful preparation of SnS nanowires using AAO template-assisted vacuum die-casting, demonstrating high chemical stability during photolithography and etching processes. Under exposure from 405 nm, 450 nm, 520 nm, 650 nm, and 780 nm lasers, the nanowires exhibited R= 4.2×104 A/W, EQE= 9.8×106 %, D*= 4.38×1013 Jones, and showed rise and fall times of 29 ms and 31.04 ms, respectively at 520 nm. In MOSFET measurements, the SnS nanowires displayed Gm= 1.23×10-9 S and μ= 0.831 cm2/V⋅s at Vd=1.0 V and Vg= -10‒40 V. Chemical stability experiments involving etching in 2M NaOH and H2Cr2O7 solutions confirmed the high chemical stability of SnS, remaining unchanged in composition after etching. To confirm the reactivity of SnS nanowires to etching in acidic and alkaline solutions, etching was performed using 2 M NaOH and H2Cr2O7 solutions on SnS (Sn3S4) bulk material. SEM imaging and EDS analysis conducted after etching confirmed the high chemical stability of SnS (Sn3S4), showing no alteration in composition due to the etching liquids.

摘要 III Abstract V 誌謝 VIII Content IX List of Figures XIV List of Tables XXIX List of Abbreviations and Acronyms XXX Chapter 1. Introduction 1 1.1 One-dimensional (1D) Nanomaterial 1 1.2 Two-dimensional (2D) Nanomaterial 2 1.3 Anodic Aluminum Oxide (AAO) Template 4 1.4 Photodetector 5 1.5 The Structure, Characteristics, and Research Motivation of SnS2 Nanoflakes 8 1.6 The Structure, Characteristics, and Research Motivation of GaSb Nanowires 10 1.7 The Structure, Characteristics, and Research Motivation of SnS Nanowires 13 1.8 Flow Chart of Research 15 Chapter 2. Experiment Procedures 19 2.1.1 Synthesized of SnS2 Nanoflakes 19 2.2 Experiment Procedures of GaSb Nanowires 21 2.2.1 Fabrication of Anodic Aluminum Oxide (AAO) Template 21 2.2.2 Preparation of GaxSb(1-x) Bulk 26 2.2.3 Synthesized of GaxSb(1-x) Nanowires 29 2.3 Experiment Procedures of SnS Nanowires 31 2.3.1 Preparation of SnS Bulk 31 2.3.2 Synthesized of SnS Nanowires 33 2.4 Device Fabrication Process 33 2.5 Photodetector and MOSFET Measurement Process 36 Chapter 3. Results and Discussion 38 3.1.1 SEM and EDS Analysis of SnS2 Nanoflakes 38 3.1.2 XRD Analysis of SnS2 Nanoflakes 40 3.1.3 Raman Analysis of SnS2 Nanoflakes 42 3.1.4 The Energy Band Structure of SnS2 with Ni Contacted 44 3.1.5 The Varied Temperature Test of Ni-contacted SnS2 Nanoflakes Device 47 3.1.6 The Anneal Effect and Varied Temperature Test of Annealed Ni contacted SnS2 Nanoflake Device 56 3.2 Characterization of GaSb Material 62 3.2.2 Linescan and Elemental-mapping Analysis of Ga0.7Sb0.3 Material 68 3.2.3 XRD Analysis of GaxSb(1-x) Material 74 3.2.3.1 XRD Analysis of GaSb 74 3.2.4 Raman Analysis of GaxSb(1-x) Material 81 3.2.4.1 Raman Analysis of GaSb 81 3.2.5 The Energy Band Structure of GaSb with Ni and Ti Contacted 86 3.2.6 Optoelectrical Properties of GaSb Nanowire Devices 90 3.2.6.1 Optoelectrical Properties of GaSb Nanowire EBL Devices 90 3.2.7 The Impact Factors of Ga0.7Sb0.3 Nanowires Morphology 98 3.3 Characterization of SnS Nanowires 102 3.3.1 SEM and EDS Analysis of SnS Nanowires 102 3.3.2 XRD Analysis of SnS Bulk 104 3.3.3 Raman Analysis of SnS Bulk and Nanowires 106 3.3.4 The Energy Band Structure of SnS with Ni and Ti Contacted 108 3.3.5 The Varied Temperature Test of Ti/Ni Contacted SnS Nanowires Device 111 3.3.6 Optoelectrical Properties of SnS Nanowires Photodetectors 116 3.3.7 Electrical Properties of SnS Nanowires MOSFETs 146 3.3.8 Annealing Condition and Linescan Analysis of SnS Nanowires 166 3.3.9 Etching Process of Sn3S4 bulk 172 Chapter 4. Summary and Conclusions 176 4.1 Annealing Conditions and the Performance of SnS2 Nanoflakes 176 4.2 Syntheses, Optoelectrical Performance, and Annealing Conditions of GaSb Nanowires 177 4.3 Optoelectrical Performance, Annealing conditions, and Etching process of SnS Nanowires 179 Chapter 5. Future Works 181 5.1 The Future Works of SnS2 Nanoflakes 181 5.2 The Future Works of GaSb Nanowires 181 5.3 The Future Works of SnS Nanowires 181 References 182 Appendix 194

[1] O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Muller “Semiconductor tubes, rods and rings of nanometer and micrometer dimension”, Physica E, 2002, 13, 969−973.
[2] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Ya “One-dimensional nanostructures: Synthesis characterization and applications”, Advanced Materials, 2003, 15, 353−389.
[3] L. Samuelson “Self-forming nanoscale devices”, Materials Today, 2003, 6, 22−31.
[4] Z. X. Yang, Han, N. Wang, F. Cheung, H.Y. Shi, X. Yip, S. Hung, T. Lee, M. H. Wong, C. Y. Ho, and J. C. Ho “Carbon Doping of InSb Nanowires for High-Performance P-channel Field Effect-Transistors”, Nanoscale 2013, 5, 9671−9676.
[5] S. A. Dayeh, D. P. R. Aplin, X. T. Zhou, P. K. L. Yu, E. T. Yu, and D. Wang “High Electron Mobility InAs Nanowire Field-Effect Transistors”, Small, 2007, 3, 326−332.
[6] A. I. Hochbaum, and P. D. Yang “Semiconductor Nanowires for Energy Conversion”, Chemical Reviews, 2010, 110, 1, 527–546.
[7] Z. X. Yang, L. Z. Liu, S. P. Yip, D. P. Li, L. F. Shen, Z. Y. Zhou, N. Han, T. F. Hung, E. Y. Pun, X. L. Wu, A. Song, and J. C. Ho “Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor–Solid–Solid Chemical Vapor Deposition”, ACS Nano, 2017, 11, 4237−4246.
[8] Z. X. Yang, S. P. Yip, D. P. Li, N. Han, G. F. Dong, X. G. Liang, L. Shu, T. F. Hung, X. L. Mo, and Johnny C. Ho “Approaching the Hole Mobility Limit of GaSb Nanowires”, ACS Nano, 2015, 9, 9268−9275.
[9] M. A. Ochoa, J. E. Maslar, and H. S. Bennett “GaSb band-structure models for electron density determinations from Raman measurements”, Journal of Applied Physics, 2023, 133, 155702.
[10] Z. C. Cheng, X. F. Song, L. F. Jiang, L. D. Wang, J. M. Sun, Z. X. Yang, Y. X. Jian, S. L. Zhang, X. Chen, and H. B. Zeng “A mixed-dimensional WS2/GaSb heterojunction for high-performance p–n diodes and junction field-effect transistors”, Journal of Materials Chemistry C, 2022, 10, 1511−1516.
[11] R. S. Wagner, and W. C. Ellis “Vapor‐liquid‐solid mechanism of single crystal growth”, Applied Physics Letters, 1964, 4, 89.
[12] A. M. Morales, and C. M. Lieber “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, 1998, 279, 208.
[13] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H.Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng “Nanoscale silicon wires synthesized using simple physical evaporation”, Applied Physics Letters, 1998, 72, 3458.
[14] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee “SiO2-enhanced synthesis of Si nanowires by laser ablation”, Applied Physics Letters, 1998, 73, 3902.
[15] Z. W. Pen, Z. R. Dai, and Z. L. Wang “Nanobelts of semiconducting oxides”, Science, 2001, 291, 1947.
[16] Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang “ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy”, Applied Physics Letters, 2003, 83, 2665.
[17] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and U. Gösele “Silicon nanowhiskers grown on <111> Si substrates by molecular-beam epitaxy”, Applied Physics Letters, 2004, 84, 4968.
[18] M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson “One-dimensional heterostructures in semiconductor nanowhiskers”, Applied Physics Letters, 2002, 80, 1058.
[19] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff “Graphene-Based Composite Materials”, Nature, 2006, 442, 282−286.
[20] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B. H. Hong “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes”, Nature, 2009, 457, 706−710.
[21] H. J. Yang, J. S. Heo, S. J. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. N. Kim “Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier”, Science 2012, 336, 1140−1143.
[22] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene”, ACS Nano, 2013, 7, 2898−2926.
[23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov “Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306, 666−669.
[24] H. Zhang “Ultrathin Two-Dimensional Nanomaterials”, ACS Nano, 2015, 9, 9451−9469.
[25] C. Z. Zhu, D. Du, and Y. H. Lin “Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications”, Biosensors and Bioelectronics, 2017, 89, 43−55.
[26] J. D. Zhou, J. H. Lin, X. W. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. M. Yu, J. C. Lei, D. Wu, F. C. Liu, Q. D. Fu, Q. S. Zeng, C. H. Hsu, C. L. Yang, L. Lu, T. Yu, Z. X. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. T. Liu and Z. Liu “A library of atomically thin metal chalcogenides”, Nature, 2018, 556, 355−359.
[27] M. S. Stark, K. L. Kuntz, S. J. Martens, and S. C. Warren “Intercalation of Layered Materials from Bulk to 2D”, Advanced Materials, 2019, 31, 1808213.
[28] F. Wang, Z. X. Wang, T. A. Shifa, Y. Wen, F. M. Wang, X. Y. Zhan, Q. S. Wang, K. Xu, Y. Huang, L. Yin, C. Jiang, and J. He “2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection”, Chemical Society Reviews, 2018, 47, 6296−6341.
[29] R. G. Mendes, J. B. Pang, A. Bachmatiuk, H. Q. Ta, L. Zhao, T. Gemming, L. Fu, Z. F. Liu, and M. H. Rummeli “Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures”, ACS Nano, 2019, 13, 978−995.
[30] M. Q. Zeng, Y. Xiao, J. X. Liu, K. N. Yang and L. Fu “Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control”, Chemical Reviews, 2018, 118, 6236–6296.
[31] Y. W. Sheng, T. X. Chen, Y. Lu, R. J. Chang, S. Sinha and J. H. Warner “High-Performance WS2 Monolayer Light-Emitting Tunneling Devices Using 2D Materials Grown by Chemical Vapor Deposition”, ACS Nano, 2019, 13, 4530–4537.
[32] X. Zhou, Q. Zhang, L. Gan, H. Q. Li, J. Xiong and T. Y. Zhai “Booming Development of Group IV-VI Semiconductors: Fresh Blood of 2D Family”, Advanced Science, 2016, 3, 1600177.
[33] F. G. Yan, Z. M. Wei, X. Wei, Q. S. Lv, W. K. Zhu and K. Y. Wang “Toward High-Performance Photodetectors Based on 2D Materials: Strategy on Methods”, Small Methods, 2018, 2, 1700349.
[34] S. Iijima “Helical microtubules of graphitic carbon”, Nature, 1991, 54, 56−58.
[35] D. Xu, X. Shi, G. Guo, L. Gui, Y. Tang “Electrochemical preparation of CdSe nanowire arrays”, The Journal of Physical Chemistry B, 2000, 101, 5061−5063.
[36] X. Wang, and G. Han “Fabrication and characterization of anodic aluminum oxide template”, Microelectronic Engineering, 2003, 66, 166−170.
[37] J. Zhang, and L. D. Zhang “Fabrication and photoluminescence of ordered GaN nanowire arrays”, The Journal of Chemical Physics, 2001, 115, 5717−5717.
[38] J. P. Sullivan, and G. C. Wood “The morphology and mechanism of formation of porous anodic films on aluminium”, Royal Society, 1970, 17, 511.
[39] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina”, Journal of Applied Physics, 1998, 84, 6023.
[40] H. Masuda, and K. Fukuda “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science, 1995, 268, 1466−1468.
[41] H. Masuda, H. Yamada, M. Satoh, and H. Asoh “Highly ordered nanochannel-array architecture in anodic alumina”, Applied Physics Letters, 1997, 71, 2770.
[42] M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp “Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates”, Advanced Materials, 2004, 16, 2052−2057.
[43] J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors”, Nature Nanotechnology, 2009, 4, 40‒44.
[44] J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications”, Applied Physics Letters, 2005, 87, 011110.
[45] P. Peumans, A. Yakimov, S. R. Forrest “Small molecular weight organic thin-film photodetectors and solar cells”, Journal of Applied Physics, 2003, 93, 3693‒3723.
[46] B. L. Carter, E. Shaw, J. T. Olesberg, W. K. Chan, T. C. Hasenberg, and M. E. Flatte “High detectivity InGaAsSb pin infrared photodetector for blood glucose sensing”, Electronics Letters, 2000, 36, 1301.
[47] A. Elfving, A. Karim, G. V. Hansso, and W. X. Ni “Three-terminal Ge dot/SiGe quantum-well photodetectors for near-infrared light detection”, Applied Physics Letters, 2006, 89, 083510.
[48] S. M. Sze “Physics of Semiconductor Devices”, Wiley, 1981, 13, 743‒770.
[49] A. O. Goushcha, and Bernd Tabbert “On response time of semiconductor photodiodes”, Optical Engineering, 2017, 56, 097107.
[50] T. F. Zhou, W. K. Pang, C. F. Zhang, J. P. Yang, Z. X. Chen, H. K. Liu, and Z. P. Guo, “Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS2 to Orthorhombic-SnS”, ACS Nano, 2014, 8, 8323–8333.
[51] Y. Hu, T. Chen, X. Q. Wang, J. B. Ma, R. P. Chen, H. F. Zhu, X. Yuan, C. Z. Yan, G. Y. Zhu, H. L. Lv, J. Liang, Z. Jin, and J. Liu “Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps”, Nano Research. 2017, 10, 1434‒1447.
[52] J. Xia, D. D. Zhu, L. Wang, B. Huang, X. Huang, and X. M. Meng “Large-Scale Growth of Two-Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors”, Advanced Functional Materials, 2015, 25, 4255‒4261.
[53] J. Gao, H. Yang, H. Y. Mao, T. Liu, Y. Zheng, Y. N. Wang, D. Xiang,
C. Han, and W. Chen “Out-of-Plane Homojunction Enabled High Performance SnS2 Lateral Phototransistor”, Advanced Optical Materials, 2020, 1901971.
[54] J. Wallentin, D. Kriegner, J. Stangl, and M. T. Borgström “Au-Seeded Growth of Vertical and in-Plane III–V Nanowires on Graphite Substrates”, Nano Letters, 2014, 14, 1707–1713.
[55] S. Y. Nalamati, S. S. Devkota, J. Li, R. Lavelle, B. Huet, D. Snyder, A. Penn, R. Garcia, L. Reynolds Jr., and S. T. Iyer “Hybrid GaAsSb/GaAs Heterostructure Core–Shell Nanowire/Graphene and Photodetector Applications”, ACS Applied Electronic Materials, 2020, 2, 3109–3120.
[56] A. W. Dey, J. Svensson, B. M. Borg, M. Ek, and L. E. Wernersson “Single InAs/GaSb Nanowire Low-Power CMOS Inverter”, Nano Letters, 2012, 12, 5593–5597.
[57] C. Y. Yeh, S. H. Wei, and A. Zunger “Relationships between the band gaps of the zinc-blende and wurtzite modifications of semiconductors”, Physical Review B, 1994, 50, 2715.
[58] J. Sun, M. Peng, Y. Zhang, L. Zhang, R. Peng, C. Miao, D. Liu, M. Han, R. Feng, Y. Ma, Y. Dai, L. He, C. Shan, A. Pan, W. Hu, and Z. X. Yang “Ultrahigh Hole Mobility of Sn-Catalyzed GaSb Nanowires for High Speed Infrared Photodetectors”, Nano Lett. 2019, 19, 5920−5929.
[59] Z.X. Yang, S. Yip, D. Li, N. Han, G. Dong, X. Liang, L. Shu, T. F. Hung, X. Mo, and J. C. Ho “Approaching the Hole Mobility Limit of GaSb Nanowires”, ACS Nano, 2015, 9, 9268−9275.
[60] Z. X. Yang, N. Han, M. Fang, H. Lin, H.Y. Cheung, S. P. Yip, E. J. Wang, T. Hung, C. Y. Wong, and J. C. Ho “Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires”, Nature Communications, 2014, 5, 5249.
[61] D. Liu, F. J. Liu, Y. Liu, Z. Y. Pang, X. M. Zhuang, Y. X. Yin, S. P. Dong, L. B. He, Y. Tan, L. Liao, F. Chen, and Z. X. Yang “Schottky-Contacted High-Performance GaSb Nanowires Photodetectors Enabled by Lead-Free All-Inorganic Perovskites Decoration”, Small, 2022, 18, 2200415.
[62] P. Hidalgo, B. Méndez, J. Piqueras, P. S. Dutta, and E. Dieguez “Effect of In doping in GaSb crystals studied by cathodoluminescence”, Semiconductor Science and Technology, 1999, 14, 901‒904.
[63] A. Duzik, and J. M. Millunchick “Surface morphology and Bi incorporation in GaSbBi (As) /GaSb films”, Journal of Crystal Growth, 2014, 390, 5‒11.
[64] D. Jacobsson, F. Panciera, J. Tersoff, M. C. Reuter, S. Lehmann, S. Hofmann, K. A. Dick, and F. M. Ross “Interface Dynamics and Crystal Phase Switching in GaAs Nanowires”, Nature 2016, 531, 317−322.
[65] Y. Y. Qian, and Q. Yang “Straight Indium Antimonide Nanowires with Twinning Superlattices Via a Solution Route”, Nano Letters, 2017, 17, 7183−7190.
[66] A. Martı´, E. Antolı´n, C. R. Stanley, C. D. Farmer, N. Lo´pez, P. Dı´az, E. Ca´novas, P. G. Linares, and A. Luque “Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell”, Physical Review Letters, 2006, 97, 247701.
[67] H. R. Li, S. You, Y. Q. Yu, Lin Ma, L. Zhang, and Q. Yang “Ga/GaSb Nanostructures: Solution-Phase Growth for High-Performance Infrared Photodetection”, Nano Research, 2023, 16, 3304‒3311.
[68] N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers”, Applied Physics Letters, 2010, 96, 231107.
[69] G. Z. Liu, Y. Li, B. Li, H. Tian, C. Fan, Y. H. Zhang, Z. Q. Hua, M. J. Wang, H. X. Zheng, and E. P. Li “High-performance photodetectors based on two-dimensional tin (II) sulfide (SnS) nanoflakes”, Journal of Materials Chemistry C, 2018, 6, 10036‒10041.
[70] B. P. Bade, S. S. Garje, Y. S. Niwate, M. Afzaal, P. O'Brien “Tribenzyltin (IV) chloride Thiosemicarbazones: Novel Single Source Precursors for Growth of SnS Thin Films”, Chemical Vapor Deposition, 2008,14, 292–295.
[71] M. Ichimura, K. Takeuchi, Y. Ono, and E. Arai “Electrochemical deposition of SnS thin films”, Thin Solid Films, 2000, 361‒362, 98‒101.
[72] R. L. Chen, L. Li, L. Jiang, X. X. Yu, D. S. Zhu, Y. Xiong, D. S. Zheng, and W. X. Yang “Small-diameter p-type SnS nanowire photodetectors and phototransistors with low-noise and high-performance”, Nanotechnology, 2022, 33, 135707.
[73] Z. X. Sa, F. J. Liu, D. Liu, M. X. Wang, J. Zhang, Y. X. Yin, Z. Y. Pang, X. M. Zhuang, P. Wang, and Z. X. Yang “Ag-catalyzed GaSb nanowires for flexible nearinfrared photodetectors” Journal of Semiconductors, 2022, 43, 112302.
[74] K. Zhang, Z. H. Ren, H. C. Cao, L. L. Li, Y. Wang, W. Zhang, Y. B. Li, H. T. Yang, Y. Meng, J. C. Ho, Z. M. Wei, and G. Z. Shen “Near-Infrared Polarimetric Image Sensors Based on Ordered Sulfur-Passivation GaSb Nanowire Arrays” ACS Nano, 2022, 15, 8128‒8140.
[75] D. K. Singh, R. Pant, B. Roul, A. M. Chowdhury, K. K. Nanda, and S. B. Krupanidhi “Temperature-dependent electrical transport and optoelectronic properties of SnS2/p-Si heterojunction”, ACS Appl. Electron. Mater. 2020, 2, 2155‒2163.
[76] V. N. Brudnyi, I. V. Kamenskaya, and P. A. Brudnyi “Fermi level pinning and hydrostatic pressure effect in electron irradiated GaSb”, Semiconductor Science and Technology, 2020, 35 (8), 085021.
[77] J. R. Kim, J. Y. Kim, S. K. Yoon, J. Y. Kang, C. W. Jeon, and W. Jo “Single Phase Formation of SnS Competing with SnS2 and Sn2S3 for Photovoltaic Applications: Optoelectronic Characteristics of Thin-Film Surfaces and Interfaces” The Journal of Physical Chemistry, 2018, 122, 6, 3523‒3532.
[78] V. N. Brudnyi, I. V. Kamenskaya, and P. A. Brudnyi “TIN SULFIDE PHASE EXPLORATION: DEPENDENCE OF OPTOELECTRONIC PROPERTIES ON MICROSTRUCTURAL GROWTH AND CHEMICAL VARIATIONS IN THIN FILM MATERIAL”, Journal of Materials Chemistry, 1998, 8, 1099‒1108.
[79] J. M. Dhimmar, H. N. Desai, and B. P. Modi “Analysis of the Inhomogeneous Barrier in In/p-Si Schottky Contact and Modified Richardson Plot”, Journal of Nano- and Electronic Physics, 2016, 02006-1.
[80] D. S. Zheng, H. H. Fang, M. S. Long, F. Wu, P. Wang, F. Gong, X. Wu, J. C. Ho, L. Liao, and W. D. Hu " High-Performance Near-Infrared Photodetectors Based on p-type SnX (X=S, Se) Nanowires Grown via Chemical Vapor Deposition" ACS Nano, 2018, 12, 7, 7239–7245.
[81] D. Mudusu, K. R. Nandanapalli, S. R. Dugasani, J. W. Kangad, S. H. Park, and C. W. Tu “Growth of single-crystalline cubic structured tin (II) sulfide (SnS) nanowires by chemical vapor deposition” RSC Advances, 2017, 7, 41452‒41459.
[82] B. RE, H. MW and B. JRS. “A review of tin (II) monosulfide and its potential as a photovoltaic absorber”, Sol Energy Mater Sol Cells, 2016, 150, 112−129.
[83] P. S. Duttaa, H. L. Bhat, and V. Kumar “The physics and technology of gallium antimonide: An emerging optoelectronic material”, Journal of Applied Physics, 1997, 81.

無法下載圖示 全文公開日期 2034/02/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE