簡易檢索 / 詳目顯示

研究生: 葉瀚文
Han-Wen Yeh
論文名稱: 嚴格回授非線性系統之適應控制
Adaptive Control of Nonlinear Systems in Strict Feedback Form
指導教授: 黃安橋
An-Chyau Huang
口試委員: 藍振洋
Chen-Yang Lan
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 嚴格回授非線性系統之適應控制嚴格回授適應控制
外文關鍵詞: Adaptive Control of Nonlinear Systems in Strict Feedback Form, Strict Feedback Form, Adaptive Control
相關次數: 點閱:247下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對具有mismatched general uncertainties的高階三角形非線性系統,提出一種新的簡化設計方法,擺脫傳統Backstepping控制和多重滑動面控制在面對高階系統時,所產生的設計複雜度問題。其概念在依循輸入輸出回授線性法的程序,對輸出訊號逐次微分,並將未知量集總,直到控制訊號出現為止。接著再藉由函數近似法,來設計適應控制器,並透過Lyapunov理論,證明其穩定性與內部訊號的有界性。本文以電腦模擬來驗證所提控制器的可行性,同時將之應用於著名的ACC benchmark problem中,來展示其優秀的控制性能。


For higher order strictly-feedback nonlinear systems, designs of the traditional backstepping control and multiple-surface sliding control are too complicated to implementation. In this thesis, a simple strategy is proposed to alleviate some of the difficulties and to provide an effective way to cope with mismatched general uncertainties. It follows the concept of input-output feedback linearization where successive differentiations of the system output are performed until the control input appears. During the procedure, all uncertainties are lumped in the current step and to be collected in the next step. When the control input comes out, a function approximation based adaptive controller is designed to cope with the lumped uncertainty. The Lyapunov theory is utilized to justify closed-loop stability and boundedness of internal signals. Computer simulations are performed to verify effectiveness of the proposed design. Application of the strategy to the renowned ACC benchmark problem also gives satisfactory results.

摘要-------------I Abstract--------II 致謝------------III 目錄------------IV 圖目錄-----------V 第一章 緒論----------------------1 第二章 非線性控制器設計回顧-------4 2.1已知一階系統之控制器設計--------5 2.2已知n階系統之控制器設計---------5 2.3 Backstepping控制器設計[4,5]---6 2.4 Adaptive Backstepping控制器設計[4,5]------10 2.5 Robust Backstepping控制器設計[4,5]--------14 2.6 FAT-based多重滑動面適應控制器設計[11,13]----18 第三章 嚴格回授非線性系統適應控制器設計----23 3.1 b(x,t)為已知量的新控制器設計------23 3.2 b(x,t)為知曉變化邊界的有界函數----26 第四章 模擬結果--30 第五章 結果與討論--------53 參考文獻---------54

[1] J.-J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall Englewood Cliffs, NJ, 1991.
[2] H. K. Khalil, Nonlinear systems, 3rd edition, NJ: Prentice hall, 2000.
[3] D. Seto, A. M. Annaswamy, and J. Baillieul, “Adaptive control of nonlinear systems with a triangular structure,” IEEE Transactions on Automatic Control, vol. 39, no. 7, pp. 1411-1428, 1994.
[4] M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and adaptive control design, Wiley, 1995.
[5] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control Systems Magazine, vol. 12, no. 3, pp. 7-17, 1992.
[6] K. Nam and A. Araposthathis, “A model reference adaptive control scheme for pure-feedback nonlinear systems,” IEEE Transactions on Automatic Control, vol.33, no. 9, pp. 803-811, 1988.
[7] D. Wang and J. Huang, “Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 195-202, 2005.
[8] S. Gutman and G. Leitmann, “On a class of linear differential games,” Journal of Optimization Theory and Application, vol. 17, pp. 511-522, 1975.
[9] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 30, no. 6, pp. 753-766, 2000.
[10] P. A. Ioannou and J. Sun, Robust adaptive control, Prentice Hall, 1996.
[11] A. C. Huang and M. C. Chien, Adaptive control of robot manipulators: A unified regressor-free approach, World Scientific, 2010.
[12] A. C. Huang and Y. S. Kuo, “Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol.74, no. 3, pp. 252-264, 2001.
[13] A. C. Huang and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, vol. 40, no. 11, pp. 1939-1945, 2004.
[14] G. F. Franklin, J. D. Powell, and E. N. Abbas, Feedback control of dynamic systems, 3rd edition, Addison Wesley, 1994.
[15] 劉龍輝,雙質量運動系統之適應控制器設計,國立臺灣科技大學機械工程研究所,碩士學位論文,2003。
[16] B. Wie and D. S. Bernstein, “A benchmark problem for robust control design,” In 1990 American Control Conference, pp. 961-962, 1990.
[17] E. G. Collins and D. S. Bernstein, “Robust control design for a benchmark problem using a structured covariance approach,” American Control Conference, pp. 970-971, 1990.
[18] M. Abrishamchian and N. Afshar, “A new approach to the robust control synthesis design for the ACC-benchmark problem,” American Control Conference, vol. 6, pp. 3859-3860, 1997.
[19] M. Sznaier and H. Rotstein, “Robust controller design for a noncolocated spring-mass system via mixed optimization,” International Journal of Robust and Nonlinear Control, vol. 5, no. 1, pp. 53-65, 1995.
[20] E. Ghaoui, “State-feedback design via linear matrix inequalities: application to a benchmark problem,” IEEE International Conference on Control and Applications, pp. 1217-1222, 1994.
[21] S. P. Linder and B. Shafai, “Qualitative robust fuzzy control with applications to 1992 ACC benchmark,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 4, pp. 409-421, 1999.
[22] S. P. Linder and B. Shafai, “Behavior-based robust fuzzy control,” IEEE International Symposium on Intelligent Control, pp. 233-238, 1998.
[23] A. G. Kelkar, and S. N. Joshi, “Robust control of non-passive systems via passification,” American Control Conference, Vol. 5, pp. 2657-2661, 1997.

QR CODE