簡易檢索 / 詳目顯示

研究生: 張進龍
Chin-Lung Chang
論文名稱: 同步磁阻電動機驅動系統最大轉矩控制器之研製
Design and Implementation of a Maximum Torque Controller for a Synchronous Reluctance Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
none
劉昌煥
none
廖聰明
none
林法正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 同步磁阻電動機最大轉矩控制數位信號處理器適應性控制器
外文關鍵詞: synchronous reluctance motor, maximum torque control, digital signal processor, adaptive controller.
相關次數: 點閱:205下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討應用適應控制器在同步磁阻電動機驅動系統。文中,首先介紹同步磁阻電動機的構造,特性及數學模式。並提出同步磁阻電動機在交、直軸上電感參數量測方法。此外,並配合最大轉矩控制,找出最佳定子電流的角度及命令。文中應用Simulink模擬同步磁阻馬達驅動系統。另ㄧ方面,本文提出適應性步階回歸控制器,針對同步磁阻電動機的運轉環境,適時調整適應律以調整控制器的相關參數,提高系統的速度響應及干擾拒斥能力,並以李阿普諾法則說明該控制法可使驅動系統達到漸進穩定,此控制法則可成功應用於速度控制系統以及位置控制。
    本文中除了以電腦模擬驗證相關理論的可行性外,並實際製作一同步磁阻電動機控速系統,該系統以一個32位元數位訊號處理器TMS320-C30為中心,執行適應性控制法則。實驗結果證明本文所提理論的正確性及可行性。


    This thesis proposes an adaptive controller design for a synchronous reluctance drive system. First, the structure, characteristics, and mathematical model of the synchronous reluctance motor are introduced. The measuring method of the d-q axis inductances is proposed. In addition, the optimal current command and angle are derived to obtain the maximum torque control. Moreover, the adaptive backstepping controller is proposed. By suitably adjusting the controller parameters, the transient response and load disturbance responses are improved. The Lyapunov function is used to show the system can achieve asymptotically stable in both speed control and position control.
    Besides computer simulation, a proto-type system has been implemented. A DSP, TMS320-C30 is used to execute the adaptive backstepping controller. Experimental results can validate the correctness and feasibility of the proposed system.

    中文摘要I 英文摘要II 目錄III 圖目錄VI 表目錄X 符號說明XI 第一章 緒論1 1.1 動機1 1.2 文獻回顧3 1.3 目的5 1.4 大綱7 第二章 同步磁阻電動機8 2.1 簡介8 2.2 結構及沿革10 2.3 數學模式13 第三章 最大轉矩控制21 3.1 簡介21 3.2 磁場導向控制22 3.3 最大轉矩控制23 3.3.1 電動機參數量測24 3.3.2 最大轉矩控制之最佳電流角度29 3.3.2.1 固定電流角度控制之系統32 3.3.2.2 最佳電流角度控制之系統33 第四章 控制器設計35 4.1 簡介35 4.2 適應性步階回歸控制器36 4.2.1 簡介36 4.2.2 速度控制器設計37 4.2.3 定位控制器設計43 第五章 系統研製48 5.1 簡介48 5.2 硬體電路製作49 5.2.1 變頻器及緩衝級電路49 5.2.2 回授及偵測電路54 5.2.3 微處理機界面電路59 5.3 軟體程式設計61 5.3.1 簡介61 5.3.2 主程式62 5.3.3 中斷副程式64 5.3.3.1 控制器中斷副程式64 5.3.3.2 變頻器切換法則中斷副程式68 第六章 電腦模擬及實測70 6.1 簡介70 6.2 電腦模擬70 6.3 實測結果73 第七章 結論與建議105 參考文獻107 作者簡介113

    [1] J. G. W. West, “DC, induction, reluctance and PM motors for electric vehicles,” IEE Proc. Electr. Power Appl., vol. 8, no. 2, pp. 77-88, Apr. 1994.
    [2] G. Kaplan, “Industrial electronics technology analysis and forecast,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 79-83, Jan. 1997.
    [3] T. A. Lipo, “Recent progress in the development in solid-state AC motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 105-117, Apr. 1988.
    [4] C. Allen, and P. Pillay, “TMS320 design for vector and current control of AC motor drives,” Electron. Lett., vol. 28, no. 23, pp. 2188-2190, Nov. 1992.
    [5] 劉昌煥著,交流電機控制,東華書局,中華民國92年5月
    [6] G. R. Slemon, “Achieving a constant power speed range for PM drives,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 368-372, Mar./Apr. 1995.
    [7] D. Platt, “Reluctance motor with strong rotor anisotropy,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 652-658, May/June 1992.
    [8] S. Li, and H. Hofmann, “Numerically efficient steady-state finite element analysis of magnetically saturated electromechanical devices,” IEEE Trans. Mag., vol. 39, no. 6, pp. 3481-3485, Nov. 2003.
    [9] B. J. Chalmers, and L. Musaba, “Design and field-weakening performance of a synchronous reluctance motor with axially laminated rotor,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1035-1041, Sep./ Oct. 1998.
    [10] A. Vagati, A. Canova, M. Chiampi, M. Pastorelli, and M. Repetto, “Design refinement of synchronous reluctance motors through finite-element analysis,” IEEE Trans. Ind. Electron., vol. 36, no. 4, pp. 1094-1102, July/Aug. 2000.
    [11] K. Uezato, T. Senjyu, and Y. Tomori, “Modeling and vector control of synchronous reluctance motors including stator iron loss,” IEEE Trans. Ind. Electron., vol. 30, no. 4, pp. 971-976, July/Aug. 1994.
    [12] G. Sturtzer, D. Flieller, and J. P. Louis, “Mathematical and experi- mental method to obtain the inverse modeling of nonsinusoidal and saturated synchronous reluctance motors,” IEEE Trans. Energy Conversion, vol. 18, no. 4, pp. 494-500, Dec. 2003.
    [13] L. Xu, X. Xu, T. A. Lipo, and D. W. Novotny, “Vector control of a synchronous reluctance motor including saturation and iron loss,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 977-985, Sep./ Oct. 1991.
    [14] S. Ichikawa, A. Iwata, M. Tomitat, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors using an on-line parameter identification method taking into account magnetic saturation,” IEEE PESC ’04, pp. 3311-3316, June 2004.
    [15] S. A. Nasar, and Y. Q. Xiang, “A fully digital control strategy for synchronous reluctance motor servo drives,” IEEE Trans. Ind. Appl., vol. 33, no. 3, pp.705-713, May/ June 1997.
    [16] L. Xu, and J. Yao, “A compensated vector control scheme of a synchronous reluctance motor including saturation and iron losses,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1330-1338, Nov./ Dec. 1992.
    [17] T. H. Liu, and M. T. Lin, “A fuzzy sliding-mode controller design for a synchronous reluctance motor drive,” IEEE Trans. Aero. and Electr. Sys., vol. 32, no. 3, pp. 1065-1076, July 1996.
    [18] T. Matsuo, and T. A. Lipo, “Field oriented control of synchronous reluctance machine,” IEEE PESC’93, pp. 425-431, June 1993.
    [19] K. K. Shyu, C. K. Lai, and Y. W. Tsai, “Optimal position control of synchronous reluctance motor via totally invariant variable structure control,” IEE Proc. Cont. Theory Appl., vol. 147, no. 1, pp. 28-36, Jan. 2000.
    [20] K. K. Shyu, C. K. Lai, and J. Y. Hung, “Totally invariant state feedback controller for position control of synchronous reluctance motor,” IEEE Trans. Ind. Electr., vol. 48, no. 3, pp. 615-624, June 2001.
    [21] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Trans. Contr. Syst. Mag., vol. 12, no. 3, pp. 7-17, June 1992.
    [22] T. H. Liu and M. T. Lin, “DSP-based sliding mode control for a sensorless synchronous reluctance motor drive,” IEEE IECON’94, pp. 182-187, Sept. 1994.
    [23] Y. J. Luo, G. J. Hwang and K. T. Liu, “Design of synchronous reluctance motor,” EEIC’95, pp. 373-379, Sept. 1995.
    [24] I. Boldea, N. Muntean and S. A. Nasar, “Robust low-cost implementation of vector control for reluctance synchronous machines,” IEE Proc. Elect. Power Appl., vol. 141, no. 1, pp. 1-6, Jan. 1994.
    [25] M. T. Lin and T. H. Liu, “DSP-based robust controller design for a synchronous reluctance drive,” IEEE IECON’97, pp. 529-534, Nov. 1997.
    [26] M. T. Lin and T. H. Liu, “Design and implementation for a digital synchronous reluctance drive,” IEEE Trans. Aero. and Electr. Sys., vol. 34, no. 4, pp. 1149-1164, Oct. 1998.
    [27] T. H. Liu, C. M. Young, and C. H. Liu, “microprocessor-based controller design and simulation for a permanent magnet synchronous motor drive,” IEEE Trans. Ind. Electron., vol, 35, no. 4, pp. 516-523, Nov. 1988.
    [28] G. Stumberger, B. Stumberger, and D. Dolinar, “Identification of linear synchronous reluctance motor parameters,” IEEE Trans. Ind. Appl., vol. 40, no. 5, pp. 1317-1324, Sept./Oct. 2004.
    [29] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEE Proc. Electr. Power Appl., vol. 151, no. 6, pp. 711-724, Nov. 2004.
    [30] R. E. Betz, “Control of synchronous reluctance machines,” IEEE IAS’91, pp. 1110-1122, Oct. 1991.
    [31] Y. Q. Xiang, and S. A. Nasar, “Estimation of rotor position and speed of a synchronous reluctance motor for servodrives,” IEE Proc. Electr. Power Appl., vol. 142, no. 3, pp. 201-205, May 1995
    [32] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” IEE Proc. Electr. Power Appl., vol. 140, no. 4, pp. 249-259, July 1993.
    [33] M. J. Kamper, and A. F. Volsdhenk, “Effect of rotor dimensions and cross magnetisation on Ld and Lq inductances of reluctance synchronous machine with cageless flux barrier rotor,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 213-220, July 1994.
    [34] A. Fratta, G. P. Toglia, A. Vagati, and F. Villata, “Torque ripple evaluation of high-performance synchronous reluctance machines,” IEEE Ind. Appl. Mag., vol. 1, no. 4, pp. 14-22, July/Aug. 1995.
    [35] A. Fratta, and A. Vagati, “A reluctance motor drive for high dynamic performance application,” IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 873-879, July/Aug. 1992.
    [36] C. B. Butt, M. A. Hoque, and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529 - 1535, Nov./Dec. 2004.
    [37] C. Mademlis and V. G. Agelidis, “On considering magnetic saturation with maximum torque to current control in interior permanent magnet synchronous motor drives,” IEEE Trans. Energy Conversion, vol. 16, no. 3, pp. 246-252, Sept. 2001.
    [38] 陳慶國,開關式磁阻電動機驅動系統之非線性控制器設計及轉軸角度估測的研究,博士論文,國立台灣科技大學電機所,民國93年1月。
    [39] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons Inc., New York, 1995.
    [40] K. S. Narendra, and A. M. Annaswamy, Stable Adaptive Systems, NJ: Prentice-Hell, 1989.
    [41] H. K. Chiang and C. A. Chen , “A Lyapunov Function Approach of Maximum Torque Control forSynchronous Reluctance Motor Speed Drive,” IEEE ICICIC '06 , pp.509-512, Aug. 2006
    [42] T. H. Liu M. T. Lin and Y. C. Yang , “Nonlinear Position Controller Design for SynRM Drive Systems With Reduced Switching Frequency,” IEEE IECON’05 , pp. 1550-1555, Nov. 2005.
    [43] 石吉亮,內藏式永磁同步電動機之轉軸角度估測器及適應性步階回歸控制器的研製,博士論文,國立台灣科技大學電機所,民國95年11月。

    QR CODE