簡易檢索 / 詳目顯示

研究生: 鄭守智
Shou-Chih Cheng
論文名稱: 快速熱退火於矽晶碇線鋸加工之製程影響研究
Effects on RTA Method for Wire Sawing Process of Silicon Ingot
指導教授: 陳炤彰
Chao-Chang, Chen
鍾俊輝
Chun-Hui, Chung
口試委員: 趙崇禮
Choung-Lii, Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 204
中文關鍵詞: 複線式線鋸切割太陽能矽晶基板快速熱退火次表面破壞
外文關鍵詞: multi-wire sawing process, solar cell, silicon substrate, RTA, subsurface damage
相關次數: 點閱:435下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受到地球能源日漸缺乏及環境保護意識崛起,京都議定書也強烈限制各國的二氧化碳排放量。因此潔淨的再生能源越來越受到重視,其中太陽能更為研發重點之一,矽晶基板所使用之單晶、多晶基板主要製作技術為複線式線鋸切割製程(Multi-wire sawing process)。本研究目的在於發展快速熱退火(Rapid thermal annealing, RTA)方法及實驗設備應用於線鋸切削製程成品中以探討材料改質對於切削晶片的厚度均勻性、表面粗糙度、破壞深度之影響,研究方法藉由Within-Wafer的觀察法可知在退火溫度提升到550℃時,單一晶片上不同位置厚度值及厚度標準差為最佳,並且切削至黏膠面位置時的厚度值與粗糙度跳動較小;Between-Wafer觀察法則可得知在經過550℃快速熱退火後的平均厚度,在不同切削成品位置可因為降低了晶片碎邊的情況因而得到較為平均的分佈。因此經快速熱退火後可由顯微觀察及測試,可改善切穿晶片過程中的晶格破裂情況、晶片邊緣不完整性與降低切穿時不穩定狀態所造成的破壞深度等情況。其中破壞深度可由550℃RTA後改善約52%。本研究重要成果可運用在研發切削薄化晶圓的晶片厚度與表面粗糙度改善,進而達到切削大尺寸高品質矽晶圓基板之應用。


    Multi-wire sawing process has been widely applied to fabricate silicon substrate of solar cells. This study is to develop a rapid thermal annealing (RTA) process and experimental equipment to assist in recrystallize the poly-crystalline silicon ingot/brick by investigating the thickness deviation, surface roughness, damage layer of the sliced wafer for effects caused by RTA process. From test results, the lowest thickness distribution and thickness standard deviation of the sliced wafer are obtained for ingot annealed at RTA 550℃. By Within-Wafer (WTW) observation method, the lowest thickness and roughness variation are obtained for sliced location near the glued surface. By Between-Wafer (BTW) observation method, it can achieve the better average thickness distribution since less chipping occurred in the ingot annealed at RTA 550℃.From the RTA rectified material and microscopy tests, it can improve the destructed grain boundary, unsmooth edge and subsurface damage conditions by preventing the unstable slicing state occurred around the glued surface. Experimental results have verified the effects of RTA by SEM and FIB. The sub-surface cracks and sliced substrate have been observed to be reduced around 52% after 550℃ RTA. Results can be applied to improve wafer thickness uniformity and surface roughness of thinning wafer study for further slicing large size and high quality solar silicon substrates.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 符號表 XVII 第一章 緒論 1  1.1研究背景 1  1.2 研究目的與方法 6  1.3 論文架構 7 第二章 文獻回顧 9  2.1硬脆材料性質研究 10  2.2硬脆材料破壞行為研究 16  2.3 線鋸切削技術 25  2.4 快速熱退火之運用 37 第三章 實驗原理與介紹 47  3.1製造分析變異方程式 47   3.1.1線鋸切割製造分析 49   3.1.2快速熱退火製程分析 51  3.2 矽材料 53  3.3 快速熱退火介紹 58   3.3.1退火 58   3.3.2熱力學的退火 58   3.3.3快速熱退火 59   3.3.4 熱輻射 60   3.3.5黑體 61   3.3.6普朗克定律(Plank’s law) 63   3.3.7維恩位移定律(Wien’s law) 64  3.4電子背向散射繞射(EBSD)圖譜原理 65   3.4.1 晶體織構(Crystal Texture)[47] 65   3.4.2極圖 67   3.4.3 反極圖 68  3.5單顆磨料幾何模型 69   3.5.1漿料膜厚度 69   3.5.2 切削損失估算 70   3.5.3估算材料移除率 72 第四章 實驗設備與規劃 73  4.1實驗設備 74   4.1.1 快速熱退火爐 74   4.1.2 微小維克氏壓印機 75   4.1.3 複線式線鋸切割機 76   4.1.4 轉子型黏度計 79  4.2實驗耗材 79   4.2.1多晶矽晶片 79   4.2.2多晶矽晶碇 80   4.2.3綠色碳化矽 81   4.2.4 載液(二甘醇Diethylene Glycol, DEG) 82   4.2.5鋸割用鋼線 85  4.3量測設備 87   4.3.1 光學顯微鏡 87   4.3.2掃描式電子顯微鏡 87   4.3.3高解析度場發射掃描式電子顯微鏡 88   4.3.4 拉伸試驗機 89   4.3.5雷射粒徑分析儀 90   4.3.6 雙束型發射聚焦離子束顯微鏡 91   4.3.7表面干涉儀 93 第五章 結果與討論 94  5.1 多晶矽快速熱退火 96   5.1.1 多晶矽晶片快速熱退火實驗 97   5.1.2 多晶矽晶片、晶碇快速熱退火有限元素模擬 101   5.1.3 快速熱退火能量值估算 106  5.2晶格觀察 108   5.2.1 晶片腐蝕晶格觀察 108   5.2.2背像電子散射圖譜觀察 111  5.3 切削結果與討論 121   5.3.1 晶片厚度量測 122   5.3.2 晶片表面粗糙度觀察 128   5.3.3 黏膠面晶格觀察 136   5.3.4 切削破壞深度檢測 141  5.4切削之材料移除率估算 149   5.4.1 理論材料移除量估算 150   5.4.2實際材料移除量估算 151 第六章 結論與建議 152  6.1 結論 152  6.2 建議 154 參考文獻 155 附錄A RTA規格 161 附錄C 熱輻射估算程式碼 165 附錄D 晶片表面粗糙度 166 作者簡介 181

    1. 張俊彥, 鄭晃忠,積體電路製程及設備技術手冊, 1997.
    2. D.Malta, C.Gregory, D.Temple, T.Knutson, C.Wang, T.Richardson, Y.Zhang, R.Rhoades, “Integrated process for defect-free copper plating and chemical-mechanical polishing of through-silicon vias for 3D interconnects”, Proceeding of Electronic Components and Technology Conference, IEEE, pp1769-1775, 2010.
    3. B.Bhushan, Handbook of micro/nano tribology, CRC-Press, 1999.
    4. 林明獻, 矽晶圓半導體材料技術, 2001
    5. C.P.Chen, M.H.Leipold, “Grinding mechanisms for ceramics”, Annals of the CIRP, Vol.45, pp469-472, 1980
    6. G.R.Anstis, P.Chantikul, B.R.Lawn, D.B.Marshell, “A critical evaluation of indentation techniques for measuring fracture toughness :II, Strength Method”, Journal of the American Ceramic Society, Vol.64, No.9, pp533-538, 1981
    7. D.B.Marshall, B.R.Lawn, A.G.Evans ,”Elastic/Plastic indentation damage in ceramics:The lateral crack system”, Journal of the American Ceramic Society,Vol.65, No.11, pp561-566, 1982
    8. M.Bujis, K.Korpel,”Three-body abrasion of brittle materials as studied Cu lapping ”, Wear,Vol.65 ,No.11, pp237-245, 1993
    9. R.W.Armstrong, A.W.Ruff, H.Shin ,”Elastic ,plastic and cracking indentation behavior of silicon crystals”, Materials Science and Engineering ,Vol.209, pp91-96, 1996
    10. B.Bushen, X.D.Li, ”Micromechanical and tribological characterization of doped single-crystal silicon and oolysilicon films for microelectromechanical system devices”, Journal of Materials Science, Vol.12, pp54-63, 1997
    11. W.Wang, K.Lu, “Nanoindentation measurement of hardness and modulus anisotropy in Ni3Al single crystals”, 2002
    12. V.Kulikovsky, V.Vorlicek, P.Bohac, M.Strantanek, R.Ctvrlik, A.Kurdyumov, L.Jastrabik, ”Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films”, Surface& Coating Technology, Vol.2002, pp1738-1745, 2008
    13. X.Zhao, B.Bhushan, ”Material removal mechanisms of single-crystal silicon on nano-scale and at ultralow loads”, Wear, Vol.223, pp66-78, 1998
    14. A.C.Fischer, ”A review of analysis methods for sub-micron indentation testing”, Journal of Vacuum, pp570-584, 2000
    15. L.Zhang, I.Zarudi, ”Towards a deeper understanding of plastic deformation in mono-crystalline silicon”, International Journal of Mechanical Sciences,Vol.43, pp1985-1996, 2001
    16. N.Panich, ”Nanoindentation of Silicon(100) studied by experimental and finite element Method”, 2003
    17. R.G.Jasineviciuss, A,J.V.Porto, J.G.Duduch, P.S.Prizani, F.Lanciotti Jr., F.J.dos Santos, ”Multiple phase silicon in submicrometer chips removed by diamond turning ”, ABCM,Vol.4,2005
    18. Y.D.Yan, T.Sun, Y.C.Liang, S.Dong, ”Effects of scratching direction on AFM-based abrasive abrasion process” ,Tribology International, Vol42, pp66-70, 2009
    19. M.Fujisawa, T.Okua, N.Arakawa, M.Watanabea, K.Nakayama, “Precision sawing with wire saw”, Annals of the CIRP, Vol.32, No.1, pp87-90, 1983
    20. F.Yang, I.Kao, “Free Abrasive machining in slicing brittle materials with wire saw”, Transaction of the ASME, Vol.123, pp 254-259, 2001.
    21. W.I.Clark, A.J.Shih, C.W.Hardin, R.L.Lemaster, S.B.McSpadden, “Fixed abrasive diamond wire machining-part I;Process monitoring and wire tension force”, International Journal of Machine Tools & Manufacture, Vol.43, pp23-532, 2003.
    22. H.J.Möller, “Basic mechanisms and models of multi-wire sawing”. Abrasive Engineering Materials, No.7, pp501-513, 2004.
    23. 左培倫, 鄭嘉葳, 晶圓切割技術-固定磨粒鑽石線鋸切割研究, 機械界雜誌, pp37-41, 2005.
    24. ,H.J Moller, “Wafering of silicon crystals”, Physis.Stat, Vol.203, pp659-669, 2006.
    25. 宋健民, 台灣鑽石技術之大躍進, 機械工業雜誌275期, pp43-51, 2006.
    26. G.Du, L.Zhou, “Hard inclusion and their deter mental effects on the wire sawing process of multi-crystalline silicon”, Solar Energy Materials & Solar Cells, Vol.91, pp1743-1748, 2007.
    27. 梁峻碩, Study on Wire Sawing of Solar Wafers(線鋸太陽能矽基板之研究), 國立台灣科技大學, 機械工程所碩士論文, 2007.
    28. A.Holt, A.Thogerson, C.Rohr, J.I.Bye, G.Helgesen, “Surface structure of mono-crystalline silicon wafers produced by diamond wire sawing and by standard slurry sawing before and after etching in Alkaline solutions’, 2007.
    29. C.Chung, I.Kao, “Damped vibration response at different dpeeds of wire in slurry wire saw manufacturing operations”, In proceedings of International Manufacturing Science and Engineering Conference, 2008.
    30. 郭炳麟, Slurry Analysis for Wire Sawing of Silicon Wafers(漿料特性分析於矽晶片線鋸切割影響研究), 國立台灣科技大學, 機械工程研究所碩士論文, 2008.
    31. C.C.A.Chen, B.L.Kuo, J.S.Liang, “Chip size estimation for effective blending ratio of slurries in wire sawing of silicon wafers for solar cells”, Advances Materials Research, Vol.76-78, pp422-427, 2009.
    32. M.Bhagavat, V.Prasad, I.Kao, “Elastohydrodynamic interaction in the free abrasive wafer slicing in a wiresaw:Modeling and finite element analysis”, Journal of Tribology, Vol.122, pp394-404, 2000.
    33. 趙培勛, Study on Wear Effects of Wire Guide Roller for wire Sawing Process(導輪磨耗於線鋸切割影響研究),國立台灣科技大學, 機械工程研究所碩士論文, 2011.
    34. C. Chung, “Modal Transition during the Wafering Process of 300 mm Silicon Ingot“, National Conference of Chinese Society of Mechanical Engineers, D05-019 2011,.
    35. A.Kitagawa, S.Kanai, M.Suzuki, “Dynamic phase diagram for a-Si in rapid thermal annealing”, Journal of Non-Crystalline Solids, pp239-242, 1993
    36. 黃宏勝, 吳美倫, 林麗娟, EBSD應用在低溫多晶粒薄膜之微結構分析與研究, 工業材料雜誌, 1995.
    37. X.Zhang, T.Y.Zhang, M.Wong, Y.Zohar,”Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing”, Sensors and Actuators, Vol.64,pp109-115, 1998
    38. C.F.Tseng, J.Woo,” Effect of nitrogen and oxygen annealing on the morphology and hardness behavior of copper thin films”, Material Characterization, Vol.45, pp187-194, 2000
    39. S.J.Wang, C.K.Ong, “Rapid thermal annealing effect on crystalline yttria-stabilized zirconia gate”, Semiconductor Science and Technology , Vol.18, pp154-157, 2002
    40. S.Tsunoda, R.Matsuura, M.Tanaka, H.Watakabe, T.Sameshima, M.Miyao, “Direct formation of strained Si on insulator by laser annealing “, Thin Solid Films, Vol.508, pp96-98, 2006
    41. T.Okada, S.Higashi, H.Kaku, T.Yorimoto, H.Murakami, S.Miyazaki, “Growth of Si crystalline in SiOx films induced by millisecond rapid thermal annealing using thermal plasma jet”, Solid State Electronics, Vol.12, pp377-380, 2008
    42. V.Kulikovsky, V.Vorlíček, P.Boháč, M.Stranyánek, R.Čtvrtlík, A. Kurdyumov, L.Jastrabik, “Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films”, Surface & Coating Technology, Vol.202, pp1738-1745, 2008
    43. M.Pinkas, H.Lotem, Y.Golan, Y.Einav, R.Golan, E.Chakotay, A.Haim, E.Sinai, M.Vaknin, Y.Hershkovitz, A.Horowitz, “Thermal healing of the sub-surface damage layer in sapphire”, Material Chemistry and Physics, Vol.124, pp323-329, 2010
    44. D.B.Dimitrov, D.Papadimitriou, G.Beshkov, “Spectroscopic characterization of thin SiC films”, Diamond and Related Materials, Vol.9, pp1148-1151, 1999
    45. 林明獻, 太陽電池技術入門, 2009
    46. A.T.Fiory, Methods in rapid thermal annealing, Handbook of Bell Laboratories, Proceeding of RTP 2000, Eighth International Conference on Advanced Thermal Processing of Semiconductors, pp15-25, 2000
    47. 孫佩鈴,The Formation of Fine Grains in Aluminum during Intense Plastic Deformation(純鋁晶大量塑性變形生成細晶粒之研究), 國立中山大學,機械工程系碩士論文, 1999.

    QR CODE