簡易檢索 / 詳目顯示

研究生: Muhammad Hendra Pebrianto
Muhammad - Hendra Pebrianto
論文名稱: 高性能鋰電池用電解液添加劑合成開發及其電化學反應動力學研究
Synthesis and characteristic of electrolyte additive and its electrochemical kinetic study in lithium ion battery
指導教授: 王復民
Fu-Ming Wang, Ph.D.
口試委員: 吳乃立
Nae-Lih Wu
黃炳照
Bing Joe Hwang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 117
中文關鍵詞: 氟吸電子基團馬來酰亞胺鋰離子電池。
外文關鍵詞: fluorine electron withdrawing groups, maleimide
相關次數: 點閱:271下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究的主軸在於比較兩種馬來酰亞胺化合物與其氟吸電子基團,分別為4-氟鄰亞苯基(F-MI)以及4,5-二氟鄰亞苯基(2F-MI),與無氟的鄰苯基(O-MI),並且評估氟官能基團對石墨電極的固態電解質界面(SEI)形成之影響力。配置六氟磷鋰(1M)加於碳酸乙烯酯:碳酸丙烯酯:碳酸二乙酯(體積比3:2:5)電解液,並加入0.1wt%的F-MI以及2F-MI作為添加劑,促使固態電解質界面的形成,並抑制當鋰嵌入或脫去的不可逆性。無添加劑的電解液與包含0.1wt%的O-MI添加劑的電解液作比較,氟官能基提供較高的還原電位在鋰/鋰離子的CV曲線為2.4-2.3伏特。由於鋰離子電池MCMB/Li陽極半電池添加劑馬來酰亞胺基中的氟官能基影響,使得電解液添加劑為2F-MI的電池電容量提升11%,使用F-MI作為添加劑的電池電容量提升7%,將前述結果與以O-MI為添加劑的對照組(電池電容量提升3%)進行比較。電化學交流阻抗分析(EIS)結果顯示,石墨表面上形成一種新穎的固態電解質界面,並且與對照組相較下有較低的電阻表現。同時藉由電化學石英晶體微量天平(EQCM)測試結果,提供了電解液還原過程之動力學研究依據。在全電池LiCoO2/MCMB變頻掃描速率的充放電表現結果,顯示了電池使用氟官能基團為添加劑的循環充放電能力最為穩定。核磁共振(NMR)的分析結果顯示出MI添加劑會造成固態電解質界面產生分解。針對MCMB之二十次循環以後的型態和元素分析方面,則利用掃描電子顯微鏡和X射線光電子能譜來進行。


    This research focuses on a comparison of two maleimide compounds possessing fluorine electron withdrawing groups, namely 4-flouro-o-phenylenedimaleimide (F-MI) and 4,5-diflouro-o-phenylenedimaleimide (2F-MI) with non-fluoridated o-phenylenedimaleimide (O-MI). This study evaluates the effect of the fluorine functional group on solid electrolyte interphase (SEI) formation on graphite electrodes. LIPF6 (1M) in ethylene carbonate (EC): propylene carbonate (PC): di-ethylene carbonate (DEC) (3:2:5 in volume) containing 0.1 wt % of F-MI and 2F-MI additives promoted SEI formation and inhibited irreversibility during lithium intercalation and de-intercalation. Compared with electrolytes without additives and an electrolyte containing 0.1 wt % O-MI additive, the presence of the fluorine group was found to provide a higher reduction potential, i.e. 2.4 - 2.3 V vs. Li/Li+ as shown by CV curves. The presence of the fluorine group in the maleimide-base additives used in lithium ion battery MesoCarbon MicroBeads (MCMB)/Li anode half cells led to capacity improvements of 11% (using 2F-MI), and 7% (using FMI) – a control using O-MI led to a 3% improvement. Electrochemical Impedance Spectroscopy (EIS) shows that a novel SEI formation on graphite’s surface shows a lower resistance when compared to the electrolyte containing only O-MI additive or an additive-free electrolyte. Dynamic studies of electrolyte during the reduction process are provided by Electrochemical Quarts Crystal Microbalance (EQCM) test. Charge discharge performance of full cell LiCoO2/MCMB in variant scan rate shows that batteries using fluorine group base additives exhibit a stable cycle-ability performance. Nuclear Magnetic Resonance (NMR) results show SEI decomposition promoted by MI additives. Morphological and elemental analysis of the MCMB after the 20th cycle was examined by scanning electron microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS).

    Abstract i 摘要 ii List of Figures vi List of Table xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Lithium Ion Battery components 5 1.2.1 Cathode 5 1.2.2 Anode 7 1.2.3 Electrolyte 9 1.3 Electrolyte application 14 1.3.1 Improving battery performance 14 1.3.2 Battery safety 16 Chapter 2 Solid Electrolyte Interphase (SEI) Formation and modification 20 2.1 SEI formation mechanism 21 2.2 SEI Improvement 25 2.2.1 Electrode surface modification 25 2.2.2 Electrolyte additive 28 2.3 The new Maleimide (MI) base additive electrolyte 37 2.4 Problem Formulation 38 2.5 Experiment Purpose and Innovation 39 Chapter 3 Research Methodology 40 3.1 Research design 40 3.2 Material 42 3.3 Equipment 43 3.4 Experimental Procedure 43 3.4.1 Preliminary Experiment 43 3.4.2 Electrochemical Measurement 44 3.4.3 SEI Evaluation 47 Chapter 4 Synthesis and Electrolyte Preparation 49 4.1 Synthesis Part 49 4.1.1 Hydrogenation Part 50 4.1.2 Dehydration Part 52 4.2 Characterization 56 4.2.1 4-flouro-phenylenediamine 56 4.2.2 FMI 57 4.2.3 4,5-diflouro-phenylenediamine 58 4.2.4 2-FMI 59 4.3 Electrolyte Preparation 60 Chapter 5 Electrochemical testing 62 5.1 Cyclic Voltammetry (CV) on MCMB anode half cell 62 5.2 Electrochemical Impedance Spectroscopy (EIS) test 65 5.2.1 EIS after 1st cycle CDC test 65 5.3 Charge Discharge test 67 5.4 Electrochemical Quart Crystal Microbalance (EQCM) test 69 5.5 Full cell battery performance 72 5.6 EIS test after several cycle with variant C-rate for full cell MCMB/LiCoO2 75 Chapter 6 SEI identification 77 6.1 Scanning Electron Microscopy (SEM) & Energy Dispersive X-ray (EDX) of MCMB anode half cell 78 6.1.1 SEM Result 78 6.1.2 EDX result 80 6.2 Nuclear Magnetic Resonance (NMR) and X-ray Photoelectron Spectroscopy (XPS) 82 6.2.1 NMR test after EQCM test 82 6.2.2 X-ray Photo Electron Spectroscopy (XPS) analysis of MCMB full cell 89 Chapter 7 Conclusion 96 Reference 97

    1. Lithium batteries: Status, prospects and future. Bruno Scrosati, Jürgen Garche. Journal of Power Sources 195 (2010) 2419–2430.
    2. Challenges for Rechargeable Li Batteries. Kim, John B. Goodenough and Youngsik. 2009, chemistry of material, review.
    3. David Lenden, Thomas B. Reddy. Hand Book Of battery , Third Edition, chapter 35. 2002.
    4. Carbon Nanostructures in Lithium Ion Batteries: Past,. Choi, Indranil Lahiri a & Wonbong. 2013, Critical Reviews in Solid State and Materials Sciences, 38:128–166.
    5. A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Yong Li, Jian Song , Jie Yang. Renewable and Sustainable Energy Reviews 37 (2014) 627–633.
    6. Potential of li thium-ion batteries in renewable energy (review). Boucar Diouf, Ramchandra Pode. Renewable Energy 76 (2015) 375 e380.
    7. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Hyun Deog Yoo, Elena Markevich, Gregory Salitra, Daniel Sharon and Doron Aurbach. Materials Today , Volume 17,Number 3 April 2014 RESEARC.
    8. Li-ion battery materials: present and future. Naoki Nitta, Feixiang Wu, Jung Tae Lee , and Gleb Yushin. Materials Today. Volume 00,Number 00. November 2014 RESEARCH.
    9. A review of advanced and practical lithium battery materials. Rotem Marom, S. Francis Amalraj, Nicole Leifer, David Jacob and Doron Aurbach. J. Mater. Chem., 2011, 21 , 9938.
    10. Lithium Batteries and Cathode Materials. Whittingham, M. Stanley. Chem. Rev. 2004, 104, 4271 −4301.
    11. Lithium bari m titanate: A stable lithium storage material for lithium-ion battries. Xiaoting Lin, Peng Li, Lianyi Shao, Miao Shui, Dongjie Wang, Nengbing Long,Yuanlong Ren, Jie Shu. Journal of Power Sources 278 (2015) 546e554.
    12. Recent developments in cathode materials for lithium ion batteries (review). Fergus, Jeffrey W. Journal of Power Sources 195 (2010) 939–954.
    13. Lithium ion rechargeable batteries: State of the art and future needs. D. Miranda, C.M. Costa, S. Lanceros-Mendez. Journal of Electroanalytical Chemistry 739 (2015) 97–110.
    14. Investig ations on novel electrolytes, solvents and SEI additives for use in lith ium-ion batteries: Systematic electroche mical characteriz ation and detailed analysis by spectroscopic methods. Raphael W. Schmitz, Patrick Murmann, René Schmitz, Romek Müller, Lisa Krämer,Johannes Kasnatscheew, Philipp Isken, Philipp Niehoff, Sascha NowakGerd-Volker Röschenthaler, Nikolai Ignatiev, Peter Sartori, Stefano Passerini. Progress in Solid State Chemistry 42 (2014) 65e84.
    15. A review on electrolyte additives for lithium-ion batteries. Zhang, Sheng Shui. Journal of Power Sources 162 (2006) 1379–1394.
    16. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Pallavi Verma, Pascal Maire , Petr Novák. Electrochimica Acta 55 (2010) 6332–6341.
    17. Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy. Jung Tae Lee, Naoki Nitta, James Benson, Alexandre Magasinski,Thomas F. Fuller, Gleb Yushin. C A R B O N 5 2 ( 2 0 1 3 ) 3 8 8 –3 9 7.
    18. Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells. E. Wang, D. Ofer, W. Bowden, N. Iltchev, R. Moses and K. Brandt. J. Electrochem. Soc. 2000 volume 147, issue 11, 4023-4028.
    19. ADDITIVE TO STABILIZE ELECTROCHEMICAL CELL. M.Y. Saidi, F. Gao, J. Barker, C. Scordilis-Kelley,. U.S. Patent 5,846,673.
    20. Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery. K. Takechi, A. Koiwai, T. Shiga. U.S. Patent 6,077,628 (2000).
    21. Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery using the same . K. Takechi, T. Shiga. U.S. Patent 6,235,431 (2001).
    22. Pistoia, Gianfaranco. Lithium-ion batteries : Advance and Application. 2014.
    23. Safer lithium ion batteries based on nonfl ammable electrolyte. Ziqi Zeng, Bingbin Wu , Lifen Xiao , Xiaoyu Jiang , Yao Chen , Xinping Ai ,Hanxi Yang , Yuliang Cao. Journal of Power Sources 279 (2015) 6e12.
    24. SOLID ELECTROLYTE INTER-PHASE ON GRAPHITE ANODES IN Li-ION BATTERIES. L.H. Huang, Z.H. Min and Q.Y. Zhang. Solid electrolyte inter-phase on graphit.
    25. How dynamic is the SEI? H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edstrom. Journal of Power Sources 174 (2007) 970–975.
    26. The form ation and stability of the solid electrolyte interfac e on the graphite anode. Victor A . Agubra, Jeffrey W. Fergus.
    27. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. E. Peled, Golodnitsky, and G. Ardel. J. Electrochem. Soc. 144 (1997) L208.
    28. Design of electrolyte solutions for Li and Li-ion batteries: a review. Doron Aurbacha, Yosef Talyosefa, Boris Markovskya, Elena Markevicha Ella Zinigrada, Liraz Asrafa, Joseph S. Gnanaraja, Hyeong-Jin Kimb. Electrochimica Acta 50 (2004) 247–254.
    29. Electrochemically lithiated graphite characterised by photoelectron spectroscopy. A.M. Anderssona, A. Henningsonb, H. Siegbahnb, U. Janssona, K. Edstroぴma,. Journal of Power Sources 119–121 (2003) 522–527.
    30. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes forlithium ion batteries. Jieyun Zheng, Hao Zheng, Rui Wang, Liubin Ben, Wei Lu, Liwei Chen, Liquan Chen and Hong Li. P h y s . C h e m . C h e m . P h y s . 2 0 1 4 , 16 , 1 3229.
    31. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. Hyun M in Jung, Seong-Hyo Park,Jongho Jeon, Yongsu Choi, Soojin Yoon, Jeong-Ju Cho, Sangdeok Oh,Sunwoo Kang, Young-Kyu Han and Hochun Lee. J . M a t e r. C h e m . A, 2013, 1 , 11975.
    32. Effect of electrolytes on the structure and evolution of the solid electrolyte nterphase (SEI) in Li-ion batteries: A molecular dynamics study. Sang-Pil Kim, Adri C.T. van Duin, Vivek B. Shenoy. Journal of Power Sources 196 (2011) 8590–8597.
    33. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Bin Li, Mengqing Xu, Tiantian Li, Weishan Li , Shejun Hu. Electrochemistry Communications 17 (2012) 92–95.
    34. Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Mengqing Xu, Liu Zhou, Lidan Xing, Weishan Li , Brett L. Lucht. Electrochimica Acta 55 (2010) 6743–6748.
    35. SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries. Elisabeth Krämer, René Schmitz, Philip Niehoff, Stefano Passerini, Martin Winter. Electrochimica Acta 81 (2012) 161–165.
    36. Electrolytes: Additives. D Aurbach and O Chusid, Bar-Ilan University, Ramat Gan, Israel. 2009 Elsevier B.V. All rights reserved.
    37. 2-Cyanofuran-A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries. C. Korepp, H.J. Santner, T. Fujii, M. Ue, J.O. Besenhard, K.C. Moller, M. Winter. Journal of Power Sources, 158 (2006) 578-582.
    38. A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy. Guorong V. Zhuang, a,z Hui Yang,b,Berislav Blizanac,a and Philip N. Ross, Jr.a.
    39. Novel SEI formation of maleimide-base d additives and its improvement of capability and cyclicability in lithium ion batteries. Fu-Ming Wang, Hsin-Mei Cheng , Hung-Chun Wu , San-Yan Chu,Chin-Shu Cheng , Chang-Rung Yang. Electrochimica Ac ta 54 (20 09) 334 4–3351.
    40. Aging Effects to Solid Electrolyte Interface (SEI) Membrane Formation and the Performance Analysis of Lithium Ion Batteries. Fu-Ming Wang1, Meng-Han Yu, Yi-Ju Hsiao, Ying Tsai, Bing-Joe Hwang, Yung-Yun Wang2 Chi-Chao Wan. Int. J. Electrochem. Sci., 6 (2011) 1014 - 1026.
    41. The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. X.J. Wang a, b, H.S. Lee b, H. Li a, X.Q. Yang b, X.J. Huang.
    42. Hamidah, Nur Laila. Synthesis of fluorine functional group of maleimide based additive and its applications to the solid electrolyte interface (SEI) formation of lithium ion battery . Taiwan : Not for publish , 2013.
    43. Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms . J. C. Burns, L. J. Krause, Dinh-Ba Le, L. D. Jensen, A. J. Smith,Deijun Xiong, and J. R. Dahn.
    44. The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. X.J. Wang a, H.S. Lee , H. Li , X.Q. Yang , X.J. Huang. Electrochemistry Communications 12 (2010) 386–389.
    45. Preparation of Malemaides and Dimaleimides. Orphaned. US patent, 1979.
    46. Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery. Atetegeb Meazah Haregewoina, Ermias Girma Leggesse, Jyh-Chiang Jianga,Fu-Ming Wang, Bing-Joe Hwanga, Shawn D. Lin. Electrochimica Acta 136 (2014) 274–285.
    47. EIS study on the formation of solid electrolyte interface in Li-ion battery. S.S. Zhang, K. Xu, T.R. Jow. Electrochimica Acta 51 (2006) 1636–1640.
    48. Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons. Wan-Yu Tsai, Pierre-Louis Taberna, and Patrice Simon. pubs.acs.org/JACS.
    49. Characterization of the SEI on a Carbon Film Electrode by Combined EQCM and Spectroscopic Ellipsometry. Kyungjung Kwon, Fanping Kong, Frank McLarnon,and James W. Evans. Journal of The Electrochemical Society, 150 (2) A229-A233 (2003)
    50. EQCM analysis of redox behavior of Prussian blue in EQCM analysis of redox behavior of Prussian blue in. Shun suke Yagi, Masaaki Fukuda, Rie Makiura,Tetsu Ichitsubo and Eiichiro Matsubara. . Mater. Chem. A, 2014, 2, 8041.
    51. In Situ NMR Studies of Lithium Ion Batteries. Nicole M. Trease, Thomas K.-J. Köster, and Clare P. Grey.
    52. Issue and challenges facing rechargeable thin film lithium batteries. Arun Patil, Vaishali Patil, Dong Wook Shin, Ji-Won Choi,. Materials Research Bulletin 43 (2008) 1913–1942.
    53. Challenges for Rechargeable Li Batteries. 1.Kim, John B. Goodenough and Youngsik. 2009, chemistry of material, review.
    54. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. Kristina Edstrom, Marie Herstedt, Daniel P. Abraham. Journal of Power Sources 153 (2006) 380–384.
    55. J. Power Sources 54 (1995) 289. A. Zaban, D. Aurbach,.
    56. K. Edström, M. Herstedt, D.P. Abraham,. J. Power Sources 153 (2006) 380.
    57. Aging Effects to Solid Electrolyte Interface (SEI) Membrane Formation and the Performance Analysis of Lithium Ion Batteries. Yi-Ju Hsiao, Ying Tsai, Bing-Joe Hwang, Yung-Yun Wang, Chi-Chao Wan. Int. J. Electrochem. Sci., 6 (2011) 1014 - 1026.
    58. MICROPOROUS MEMBRANES BY MELT PROCESSING OF POLYPROPYLENE BLENDS. M. Xanthos, C. Chandavasu, K. K Sirkar and C. G. Gogos. Newark, NJ 07102, USA .
    59. Xuerong Zhang,Robert Kostecki,Thomas J. Richardson, James K. Pugh, and Philip N. Ross, Jr,z. Carbonates, Electrochemical and Infrared Studies of the Reduction of Organic. Journal of The Electrochemical Society, 148 (12) A1341-A1345 (2001)
    60. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries. Fu -M ing Wan g, John Rick. Solid State Ionics 268 (2014) 31–34.
    6.1. XPS studies of graphite electrode materials for lithium ion batteries. R.I.R. Blyth , H. Buqa, F.P. Netzer, M.G. Ramsey, J.O. Besenhard , P. Golob , M. Winter Applied Surface Science 167 2000 99–106Ž.
    62. XPS analysis of the SEI formed on carbonaceous materials . V. Eshkenazia, E. Peleda, L. Bursteinb, D. Golodnitsky. Solid State Ionics 170 (2004) 83–91.

    QR CODE