簡易檢索 / 詳目顯示

研究生: ARIONO VERDIANTO
ARIONO VERDIANTO
論文名稱: 氟化馬來醯亞胺異構物電解液添加劑用於鋰離子電池矽陽極性能探討之研究
The Investigation of Fluorinated Maleimide Isomers as the Electrolyte Additive for the Silicon Anode in Lithium-Ion Battery
指導教授: 王 復 民
Wang Fu-Ming
口試委員: 楊純誠
Chun-Chen Yang
王丞浩
Chen-Hao Wang
王 復 民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 121
中文關鍵詞: 固態電解質界面馬來醯亞胺添加劑鋰離子電池
外文關鍵詞: silicon, solid electrolyte interface, maleimide-based additive, lithium ion battery
相關次數: 點閱:365下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽為一非常有潛力的陽極材料因其超高的電容量(〜4200mAh/g),比石墨作為陽極(〜372mAh/g)高出約十倍。然而,經過數次充放電循環後體積會大量膨脹> 300%。在這項研究中,我們觀察氟化異構物馬來醯亞胺的作用,用以抑制體積膨脹之缺點且延長電池的使用壽命。目前研究已經證明加入此種添加劑使用於矽材料作為負極的情況下對鋰離子電池循環性能具有顯著影響。透過具有更高的還原電位,氟化異構物馬來醯亞胺添加劑將比碳酸酯基電解液更減少SEI層的生成,且減少鹽類的分解量。由實驗結果可以確信馬來醯亞胺的還原在陽極表面提供更穩定的鈍化層,以防止在循環伏安法時發生寄生反應且馬來醯亞胺電解液添加劑正還原電位(〜2.4 V)比碳酸酯電解液(如EC:DEC)具有更大的正還原電位(〜1.5 V)。在研究中,碳酸酯電解液被認為是SEI形成的指標。本研究進行了深入的探討,特別是鋰離子電池添加劑對於SEI的形成的影響。而實驗採用交流阻抗(EIS)來分析關於鋰離子電池阻抗以及電池內阻的資訊。為了觀察表面形態的變化,我們也使用掃描電子顯微鏡(SEM)進行測試。 SEM提供了關於SEI型態變化的物理信息,同時為了分析SEI的組成,我們也進行了XPS測試。總體來說,與先前研究相比,使用添加劑在電解液上有著明顯的改善與優勢。


    Silicon is well known potential candidate as material for anode due to gravimetric energy capacity ~4200 mAh/g which is around ten times higher than graphite-based anode ~372 mAh/g but it is suffered from huge volume expansion >300% after several times of cycling. In this study, we trying to observe the fluorinated maleimide isomer effect for addressing this grievous in order to suppress the volume expansion and finally extend the life time of the batteries. This additive has been proved for having significant impact on lithium-ion battery cycling performance in the case of graphite used as negative electrode material. By having higher reduction potential, fluorinated maleimide isomer additive will reduce earlier than electrolyte components, the carbonate-based electrolyte, to form SEI layer and then reduce the amount of salt decomposition. It was believed that the reduction of maleimide provide more stable passivation layer on the surface of anode to prevent the parasitic reaction being happened. Cyclic voltammetry result depicts that maleimide-based electrolyte additive has more positive reduction potential ~2.4 V than carbonate-based electrolyte ~1.5 V such as EC: DEC which is assumed to be the indicator of SEI formation. A further study has been done to take an assessment of the additive impact on lithium-ion batteries especially for SEI formation. Electrical impedance spectroscopy (EIS) will give the information about impedance of lithium-ion batteries as well as the internal resistance of the batteries. To observe the surface morphology changing, we run scanning electron microscopy (SEM) test. SEM provides the information of the physical information of SEI regarding the morphology changing and to analyze the composition of SEI, XPS testing has been conducted. Overall, there is an improvement the adding of additive onto electrolyte compare to this system without the presence of additive.

    ABSTRACT IV 摘要 V ACKNOWLEDGEMENT VI TABLE OF CONTENTS VII LIST OF FIGURES X LIST OF TABLES XIII CHAPTER I 1 INTRODUCTION 1 1.1 Background 1 1.2 Problem Formulation 8 1.3 Research Purpose 9 CHAPTER II 10 LITERATURE REVIEW 10 2.1 Internal Structure of Lithium-ion Batteries 12 2.1.1 Cathode 12 2.1.1.1 Layered oxides 14 2.1.1.2 Spinels 14 2.1.1.3 Olivines 15 2.1.2 Anode 16 2.1.2.1 Carbon anodes 16 2.1.2.2 Alloying anodes 17 2.1.3 Electrolyte 20 2.1.3.1 Electrolyte solvents. 20 2.1.3.2 Salts 22 2.1.3.3 Additives of Electrolyte 25 2.1.4 Separator 27 2.2 Silicon Anode 30 2.2.1 Lithium-Silicon System 30 2.2.2 Silicon Volume Expansion 33 2.2.3 Electrolyte for Silicon Alloys 34 2.3 Solid Electrolyte Interface (SEI) 38 2.3.1 General Carbonate-based Electrolyte Reduction 39 2.3.2 The Formation SEI layer 43 2.3.3 SEI layer evolution 44 2.4 Maleimide-based Additive 45 CHAPTER III 49 RESEARCH METHODOLOGY 49 3.1 Research Design 50 3.2 Materials 51 3.3 Equipment 52 3.4 Experimental procedure 53 3.4.1 Synthesis of Fluorinated Maleimide Additive 53 3.4.2 Fabrication of SiNPs@CMC. 53 3.4.3 Electrolyte and Battery Preparation 54 3.5 Electrochemical testing 56 3.5.1 Cyclic voltammetry (CV) test 56 3.5.2 Charge discharge test 56 3.5.3 Electrochemical Impedance spectroscopy (EIS) test 57 3.6 SEI Layer Evaluation 57 3.6.1 Scanning Electron Microscopy (SEM EDX) test 57 3.6.2 X-Ray Photoelectron Spectroscopy (XPS) test 58 CHAPTER IV 59 SYNTHESIS MALEIMIDE BASED-ADDITIVE 59 4.1 Synthesis 59 4.1.1 Synthesis Procedure of MI-based Additive 61 4.1.1.1 Hydrogenation Part 61 4.1.1.2 Dehydration 62 4.2 Characterization 64 4.2.1 Mass Spectral 64 4.2.1 1-fluoro-ortho-phenylenediamine 64 4.2.1 2-fluoro-ortho-maleimide (Ortho) 64 4.2.2 FTIR-ATR characterization 67 4.3 Electrolyte Preparation 72 CHAPTER V 73 RESULT AND DISCUSSION 73 5.1 Electrochemical Analysis 73 5.1.1 Cyclic Voltammetry 73 5.1.2 Cycling Performance 78 5.1.3 Electrical Impedance Spectroscopy (EIS) Testing 82 5.2 Solid Electrolyte Interface (SEI) Evaluation 86 5.2.1 Scanning Electron Microscopy (SEM EDX) analysis 86 5.2.2 ex situ X-ray Photoelectron Spectroscopy (XPS) 89 CHAPTER VI 98 CONCLUSION 98 REFERENCES 100

    1. Lewis, N.S., Powering the planet. Mrs Bulletin, 2007. 32(10): p. 808-820.
    2. Larcher, D. and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 2015. 7(1): p. 19-29.
    3. Beaudin, M., et al., Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 2010. 14(4): p. 302-314.
    4. Besenhard, J.O. and M. Winter, Insertion reactions in advanced electrochemical energy storage. Pure and Applied Chemistry, 1998. 70(3): p. 603-608.
    5. Dunn, B., H. Kamath, and J.M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928-935.
    6. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    7. Yoshino, A., The Birth of the Lithium-Ion Battery. Angewandte Chemie-International Edition, 2012. 51(24): p. 5798-5800.
    8. Xiong, R., et al., Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach. Energies, 2012. 5(5): p. 1455-1469.
    9. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004. 104(10): p. 4303-4417.
    10. Yu, W.J., et al., Lithiation of Silicon Nanoparticles Confined in Carbon Nanotubes. Acs Nano, 2015. 9(5): p. 5063-5071.
    11. Luo, Z.P., et al., Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon, 2016. 98: p. 373-380.
    12. Xiao, Y., et al., Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries. Acs Applied Materials & Interfaces, 2013. 5(5): p. 1681-1687.
    13. Ashuri, M., Q.R. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 2016. 8(1): p. 74-103.
    14. Dash, R. and S. Pannala, The potential of silicon anode based lithium ion batteries. Materials Today, 2016. 19(9): p. 483-484.
    15. Wang, Z.L., et al., Effect of glutaric anhydride additive on the LiNi0.4Mn1.6O4 electrode/electrolyte interface evolution: A MAS NMR and TEM/EELS study. Journal of Power Sources, 2012. 215: p. 170-178.
    16. Leung, K., et al., Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces. Journal of Physical Chemistry C, 2016. 120(12): p. 6302-6313.
    17. Wang, F.M., et al., Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochimica Acta, 2009. 54(12): p. 3344-3351.
    18. Wang, F.M., et al., Phenylenedimaleimide positional isomers used as lithium ion battery electrolyte additives: Relating physical and electrochemical characterization to battery performance. Journal of Power Sources, 2013. 231: p. 18-22.
    19. Nagai, A. and A. Takahashi, Preparation and Thermal-Behavior of Fluorine-Containing Phenylmaleimides. Polymer Journal, 1994. 26(3): p. 357-362.
    20. White, L.A., J.W. Weber, and L.J. Mathias, Synthesis and thermal characterization of a one component maleimide-epoxy resin. Polymer Bulletin, 2001. 46(6): p. 463-469.
    21. Evarts, E.C., To the limits of lithium. Nature, 2015. 526(7575): p. S93-S95.
    22. Wakihara, M., Recent developments in lithium ion batteries. Materials Science & Engineering R-Reports, 2001. 33(4): p. 109-134.
    23. Deng, D., Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 2015. 3(5): p. 385-418.
    24. K. Mizushima, P.C.J., P. J. Wiseman, J. B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 7.
    25. Whittingham, M.S., Materials challenges facing electrical energy storage. Mrs Bulletin, 2008. 33(4): p. 411-419.
    26. Mi, H.W., et al., Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for Lithium-ion batteries. Electrochimica Acta, 2016. 190: p. 1032-1040.
    27. Whittingham, M.S., Lithium batteries and cathode materials. Chemical Reviews, 2004. 104(10): p. 4271-4301.
    28. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science & Engineering R-Reports, 2012. 73(5-6): p. 51-65.
    29. Thackeray, M.M., Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 1997. 25(1-2): p. 1-71.
    30. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
    31. Cheng, X.B., et al., A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science, 2016. 3(3).
    32. Scrosati, B., Recent advances in lithium ion battery materials. Electrochimica Acta, 2000. 45(15-16): p. 2461-2466.
    33. Kheirabadi, N. and A. Shafiekhani, Graphene/Li-ion battery. Journal of Applied Physics, 2012. 112(12).
    34. Shukla, A.K. and T.P. Kumar, Materials for next-generation lithium batteries. Current Science, 2008. 94(3): p. 314-331.
    35. Zhang, W.J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
    36. Ulvestad, A., Porous Silicon as Anode Material for Li-ion Batteries, in Materials Science and Engineering. 2013, Norwegian University of Science and Technology: Norwegia. p. 140.
    37. Irisarri, E., A. Ponrouch, and M.R. Palacin, Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2015. 162(14): p. A2476-A2482.
    38. Li, A., et al., MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Reports, 2017. 7.
    39. Winter, M. and J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 1999. 45(1-2): p. 31-50.
    40. Dey, A.N., Electrochemical Alloying of Lithium in Organic Electrolytes. The Electrochemical Society, 1971. 118: p. 1547-1549.
    41. Jansen, A.N., et al., Development of a high-power lithium-ion battery. Journal of Power Sources, 1999. 81: p. 902-905.
    42. Ng, S.H., et al., Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie-International Edition, 2006. 45(41): p. 6896-6899.
    43. Palomino, J., et al., Study of the Structural Changes Undergone by Hybrid Nanostructured Si-CNTs Employed as an Anode Material in a Rechargeable Lithium-Ion Battery. Journal of Physical Chemistry C, 2015. 119(36): p. 21125-21134.
    44. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
    45. Tillmann, S.D., P. Isken, and A. Lex-Balducci, Lithium Coordination in Cyclic-Carbonate-Based Gel Polymer Electrolyte. Journal of Physical Chemistry C, 2015. 119(27): p. 14873-14878.
    46. Zhang, S.S., et al., LiPF6-EC-EMC electrolyte for Li-ion battery. Journal of Power Sources, 2002. 107(1): p. 18-23.
    47. Chagnes, A. and J. Swiatowska, Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries, in Lithium Ion Batteries New Developments, i. Belharouak, Editor. 2015, Intech: France. p. 167-189.
    48. Marcinek, M., et al., Electrolytes for Li-ion transport - Review (vol 276, pg 107, 2015). Solid State Ionics, 2015. 282: p. 95-95.
    49. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    50. Arora, P. and Z.M. Zhang, Battery separators. Chemical Reviews, 2004. 104(10): p. 4419-4462.
    51. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
    52. Sadoway, D.R., Block and graft copolymer, electrolytes for high-performance, solid-state, lithium batteries. Journal of Power Sources, 2004. 129(1): p. 1-3.
    53. Baginska, M., et al., Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres. Advanced Energy Materials, 2012. 2(5): p. 583-590.
    54. Baginska, M., et al., Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. Journal of Power Sources, 2014. 269: p. 735-739.
    55. C. John Wen, R.A.H., Chemical diffusion in intermediate phases in the lithium-silicon system. Solid State Chemistry, 1981. 37: p. 271-278.
    56. Li, H., et al., The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000. 135(1-4): p. 181-191.
    57. Netz, A., R.A. Huggins, and W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. Journal of Power Sources, 2003. 119: p. 95-100.
    58. Zhang, S., et al., Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Current Opinion in Chemical Engineering, 2016. 13: p. 24-35.
    59. Ge, M.Y., et al., Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters, 2012. 12(5): p. 2318-2323.
    60. Obrovac, M.N. and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid State Letters, 2004. 7(5): p. A93-A96.
    61. Hatchard, T.D. and J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society, 2004. 151(6): p. A838-A842.
    62. Li, J. and J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of the Electrochemical Society, 2007. 154(3): p. A156-A161.
    63. Park, C.M., et al., Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
    64. Limthongkul, P., et al., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia, 2003. 51(4): p. 1103-1113.
    65. Li, B., et al., Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries. Scientific Reports, 2015. 5.
    66. Fernandez-Perea, R., et al., Collective dynamics on a crystal composed by disparate-mass particles: Li22Pb5. Physical Review E, 1999. 59(3): p. 3212-3222.
    67. Zhou, Y.N., et al., Nanostructured NiSi thin films as a new anode material for lithium ion batteries. Electrochemistry Communications, 2011. 13(6): p. 546-549.
    68. Wu, H., et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012. 7(5): p. 309-314.
    69. Nitta, N. and G. Yushin, High-Capacity Anode Materials for Lithium- Ion Batteries: Choice of Elements and Structures for Active Particles. Particle & Particle Systems Characterization, 2014. 31(3): p. 317-336.
    70. Ji, L.W. and X.W. Zhang, Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy & Environmental Science, 2010. 3(1): p. 124-129.
    71. Szczech, J.R. and S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science, 2011. 4(1): p. 56-72.
    72. Faulkner, R.A., et al., The Surface of Nanoparticle Silicon as Studied by Solid-State NMR. Materials, 2013. 6(1): p. 18-46.
    73. Haregewoin, A.M., A.S. Wotango, and B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
    74. Chen, X.L., et al., Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid-Electrolyte Interphase Film on Silicon Anode. Chemsuschem, 2014. 7(2): p. 549-554.
    75. Aurbach, D., Y. Einely, and A. Zaban, The Surface-Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions. Journal of the Electrochemical Society, 1994. 141(1): p. L1-L3.
    76. Aurbach, D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
    77. Schroder, K.W., et al., Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions. Journal of Physical Chemistry C, 2012. 116(37): p. 19737-19747.
    78. Gofer, Y., M. Ben-Zion, and D. Aurbach, Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. Journal of Power Sources, 1992. 39(2): p. 163-178.
    79. Lee, J.T., et al., Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy. Carbon, 2013. 52: p. 388-397.
    80. Gauthier, M., et al., Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. Journal of Physical Chemistry Letters, 2015. 6(22): p. 4653-4672.
    81. Fong, R., U.v. Sacken, and J.R. Dahn, Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. The Electrochemical Society, 1990. 137: p. 2009−2013.
    82. Peled, E., et al., An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. Journal of the Electrochemical Society, 1998. 145(10): p. 3482-3486.
    83. Choi, N.S., et al., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources, 2006. 161(2): p. 1254-1259.
    84. Chan, C.K., et al., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009. 189(2): p. 1132-1140.
    85. Yen, Y.C., et al., Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells. Journal of the Electrochemical Society, 2009. 156(2): p. A95-A102.
    86. Pereira-Nabais, C., et al., Insight into the Solid Electrolyte Interphase on Si Nanowires in Lithium-Ion Battery: Chemical and Morphological Modifications upon Cycling. Journal of Physical Chemistry C, 2014. 118(6): p. 2919-2928.
    87. Philippe, B., et al., Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries - A Photoelectron Spectroscopy Study. Chemistry of Materials, 2013. 25(3): p. 394-404.
    88. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
    89. Dufek, E.J., Evaluation of the SEI Using a Multilayer Spectroscopic Ellipsometry Model. Ecs Electrochemistry Letters, 2014. 3(11): p. A108-A111.
    90. Zhang, S.S., et al., Understanding solid electrolyte interface film formation on graphite electrodes. Electrochemical and Solid State Letters, 2001. 4(12): p. A206-A208.
    91. Verma, P., P. Maire, and P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
    92. Agubra, V.A. and J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 2014. 268: p. 153-162.
    93. Soto, F.A., et al., Formation and Growth Mechanisms of Solid-Electrolyte lnterphase Layers in Rechargeable Batteries. Chemistry of Materials, 2015. 27(23): p. 7990-8000.
    94. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 2014. 114(23): p. 11503-11618.
    95. Aurbach, D., et al., The behaviour of lithium electrodes in propylene and ethylene carbonate: The major factors that influence Li cycling efficiency. Electroanalytical Chemistry, 1992. 339(1-2): p. 451-471.
    96. Schechter, A., D. Aurbach, and H. Cohen X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir, 1999. 15(9): p. 3334-3342.
    97. Zinth, V., et al., Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. Journal of Power Sources, 2014. 271: p. 152-159.
    98. Song, W.T., S. Bharath, and J. Reutt-Robey, Adsorption and Reaction Branching of Molecular Carbonates on Lithiated C(0001) Substrates. Journal of Physical Chemistry C, 2014. 118(33): p. 19017-19022.
    99. Leung, K., Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms. Chemical Physics Letters, 2013. 568: p. 1-8.
    100. Mitra, S. Fabrication of Lithium Microbatteries by Femtosecond Laser Machining. 2010 [cited 2017 20th June]; Available from: http://ma.ecsdl.org/content/MA2010-03/1/712.full.pdf+html.
    101. Herges, U.-M.W.a.R., Automatic interpretation of infrared spectra: recognition of aromatic substitution patterns using neural networks. Chem. Inf. Comput. Sci, 1992. 32(6): p. 723–731.
    102. Mittal, K.L., Polyimides and other high temperature polymers synthesis, characterization, and applications. Volume 5, in Polyimides and other high temperature polymers : synthesis, characterization, and applications. 2009, VSP,: Leiden ; Boston. p. 1 online resource (x, 424 p.).
    103. Shibata, M., et al., High-performance bio-based bismaleimide resins using succinic acid and eugenol. Polymer Journal, 2011. 43(11): p. 916-922.
    104. Yerlikaya, Z., Z. Oktem, and E. Bayramli, Chain-extended bismaleimides .1. Preparation and characterization of maleimide-terminated resins. Journal of Applied Polymer Science, 1996. 59(1): p. 165-171.
    105. Engel, T. and G. Kickelbick, Thermoreversible Reactions on Inorganic Nanoparticle Surfaces: Diels-Alder Reactions on Sterically Crowded Surfaces. Chemistry of Materials, 2013. 25(2): p. 149-157.
    106. Magasinski, A., et al., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. Acs Applied Materials & Interfaces, 2010. 2(11): p. 3004-3010.
    107. Antonova, N.M., The Mechanical Properties of a Composite Coating with a Polymer Matrix Based on Sodium Carboxymethylcellulose and Aluminum Powder. Russian Journal of Non-Ferrous Metals, 2009. 50(4): p. 419-423.
    108. Shobukawa, H., et al., Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell. Journal of Power Sources, 2017. 359: p. 173-181.
    109. Shim, E.G., et al., Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. Journal of Power Sources, 2007. 172(2): p. 919-924.
    110. Chen, X.L., et al., Virus-Enabled Silicon Anode for Lithium-Ion Batteries. Acs Nano, 2010. 4(9): p. 5366-5372.
    111. Nurpeissova, A., et al., Epicyanohydrin as an Interface Stabilizer Agent for Cathodes of Li-Ion Batteries. Journal of the Electrochemical Society, 2016. 163(2): p. A171-A177.
    112. Yoon, T., et al., Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. Chemistry of Materials, 2017. 29(7): p. 3237-3245.
    113. Xu, K., et al., Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-lon batteries. Journal of Physical Chemistry B, 2006. 110(15): p. 7708-7719.
    114. Shin, H.J., et al., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 2009. 19(12): p. 1987-1992.
    115. Radvanyi, E., et al., An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. Journal of Analytical Atomic Spectrometry, 2014. 29(6): p. 1120-1131.
    116. Malmgren, S., et al., Consequences of air exposure on the lithiated graphite SEI. Electrochimica Acta, 2013. 105: p. 83-91.
    117. Philippe, B., et al., Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy. Chemistry of Materials, 2012. 24(6): p. 1107-1115.
    118. Guo, B.K., et al., Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochemistry Communications, 2008. 10(12): p. 1876-1878.
    119. Li, H.H., et al., Dual-Porosity SiO2/C Nanocomposite with Enhanced Lithium Storage Performance. Journal of Physical Chemistry C, 2015. 119(7): p. 3495-3501.

    QR CODE