簡易檢索 / 詳目顯示

研究生: 楊穎侃
Ying-kan Yang
論文名稱: 矽奈米結構製作光電元件之探討
The Investigation of Silicon Nanostructures for Optoelectronic Devices
指導教授: 黃柏仁
Bohr-ran Huang
口試委員: 黃炳照
Bing-joe Hwang
周賢鎧
Shyan-kay Jou
張守進
Shoou-jinn Chang
楊文祿
Wen-luh Yang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 99
中文關鍵詞: 矽奈米結構光電元件金屬輔助無電蝕刻太陽能電池
外文關鍵詞: Silicon nanostructure, Optoelectronic device, Metal-assisted electroless etching, Solar cell
相關次數: 點閱:318下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以簡單與低成本的製程技術製備高效能矽奈米結構光電元件。矽奈米結構提供能有效增加電子與光學性能、良好的生物相容性、巨大的表面積與體積比以及傑出的光學性質,並提供了多功能性,因此相當有潛力應用在不同的科技領域上,例如場發射元件、氣體感測器與太陽能電池。首先利用無電蝕刻技術製作矽奈米柱結構,再將奈米碳管成長於矽奈米柱結構上製作矽奈米柱/奈米碳管之核殼結構應用於場發射元件。相較於矽奈米柱、奈米碳管,矽奈米柱/奈米碳管之核殼結構提供了更多的場發射源與降低功函數進而改善場發射特性,因此矽奈米柱/奈米碳管之核殼結構陰極有較低的起始電場與較高的場增強因子。
    接著利用無電蝕刻技術與反覆無電蝕刻技術製作準直矽奈米線結構與稻草狀矽奈米線結構,並將其應用於氫氣感測元件上。相較於準直矽奈米線結構,稻草狀矽奈米線結構提供了更多表面積、矽氧鍵結與懸浮鍵,能有效增加氣體離子之吸附能力,進而大大提升氫氣感測器之響應能力。
    除此之外,更提供一種關鍵技術製作高均勻且可控制之金字塔結構。此技術利用氮化矽薄膜作為等向蝕刻遮罩,再利用調整氮化矽薄膜之厚度可以得到不同尺寸之金字塔結構,並得到良好之抗反射特性。更利用一步驟與二步驟金屬輔助無電蝕刻技術,配合利用融膠凝膠法配製之磷擴散源與網印技術製作高效能矽奈米結構太陽能電池,在此階段藉由最佳化矽奈米結構之表面形貌與特性,太陽能電池之效率提升達到11.86%。最後再藉由熱氧化表面鈍化技術將矽奈米結構太陽能電池之效率提升至13.29%。
    此論文的實現方面,以簡單製程成功地製備各種矽奈米結構並應用於光電元件上,期望讓矽奈米結構相關應用元件上能有效地提高效率,以提供給產業界新的材料與製程技術和方向,作為將來開發奈米光電感測元件之研究基礎。


    This study presents a simple approach and cost-effective techniques to develop the silicon nanostructure (SNS) based high performance optoelectronic devices. The SNS provide a number of combined properties including excellent electronic/optical properties, favorable biocompatibility, huge surface-to-volume ratios, and excellent anti-reflection property. The SNS offer good performance in applications for field emission (FE) devices, gas sensors, and solar cells.
    The CNTs grown directly onto the SiNRs forming a core-shell structure of SiNRs/CNTs field emission cathode by thermal chemical vapor deposition. The field emission properties of SiNRs, CNTs and SiNRs/CNTs field emission cathodes were investigated. It is exhibited that this core-shell structure of SiNRs/CNTs for field emission cathode improves the field emission properties.
    The metal-assisted electroless etching (MAEE) and repeated MAEE techniques of fabricating straight-aligned and rice-straw-like SiNW arrays for hydrogen gas sensing. The rice-straw-like SiNW arrays structure effectively increased the surface area and the concentration of silicon oxide, which provided additional binding sites for gas molecules.
    A cost-efficient method to texture monocrystalline silicon by depositing a layer of Si3N4 by sputtering to act as an anisotropic etching mask. Anisotropic etching through this mask forms various pyramid structures depending on the thickness of the Si3N4 layer. The texturing process is evaluated in terms of the resulting surface morphology and the reflectivity.
    The low cost MAEE, PSG dopant solution and a screen-printing technique are adopted to fabricate the n+ emitter and the electrodes for silicon nanowire (SiNW) array based solar cells. Results indicate that there is a competition phenomenon between the aspect ratio and the density, that straight-aligned SiNW array structures with a certain aspect ratio and an appropriate density possesses better solar cell performance (~10.15%).
    Solar cells based on a high efficiency silicon nanostructure (SNS) are developed using the two step MAEE technique. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two step MAEE technique showed an increased silicon surface coverage of and a decrease in reflectivity. Performance of the SNS-based solar cell is found to be optimized (~11.86%) in SNS with a length of ~300nm, an aspect ratio of ~5, and surface coverage of ~84.9%. Moreover, the performance of the SNS-based solar cells is further to 13.29% by using the thermal oxidation passivation method.
    The SNS are successful synthesized by the facile methods and low manufacturing temperatures. This work proposes an effective way to enhance the performance of SNS based optoelectronic devices. The development of SNS in this thesis will be useful for the base of next-generation devices.

    Abstract (in Chinese) Abstract Acknowledgements (in Chinese) Contents List of figures List of tables Chapter 1 Introduction 1.1 Overview of SNS related applications 1.2 Motivation and goals Chapter 2 Literature review 2.1 Basic properties of SNS 2.2 Synthesis methods of SNS 2.2.1 Bottom-up Approach 2.2.2 Top-down Approach 2.3 Field emission devices 2.4 Hydrogen sensor 2.5 Solar cells Chapter 3 Core-Shell Structure of a Silicon Nanorod/Carbon Nanotube Field Emission Cathode 3.1 Experimental Details 3.2 Morphology and characterization 3.3 Field emission properties of Silicon Nanorod/Carbon Nanotube field emission cathode 3.4 Summary Chapter 4 Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor 4.1 Experimental Details 4.2 Characterization and hydrogen gas sensing properties of silicon nanowire arrays 4.3 Summary Chapter 5 Key technique for texturing a uniform pyramid structure with a layer of silicon nitride on monocrystalline silicon wafer 5.1 Experimental Details 5.2 Morphology and characterization 5.3 Optical reflectance properties of pyramid structure 5.4 Summary Chapter 6 A simple and low-cost technique for silicon nanowire arrays based solar cells 6.1 Experimental Details 6.2 Morphology and characterization 6.3 Solar cell performance 6.4 Summary Chapter 7 Efficiency improvement of silicon nanostructure-based solar cells 7.1 Optimal design of silicon nanostructure 7.1.1 Experimental Details 7.1.2 Morphology and characterization 7.1.3 Solar cell performance 7.1.4 Summary 7.2 Silicon nanostructure-based solar cells with passivation 7.2.1 Experimental Details 7.2.2 Morphology and characterization 7.2.3 Solar cell performance 7.2.4 Summary Chapter 8 Conclusion and future research 8.1 Concluding remarks 8.2 Future research References List of publication (SCI journal papers)

    [1] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles”, Advanced Functional Materials 16 (2006) 387–394.
    [2] T. K. Sham, D. T. Jiang, I. Coulthard, J. W. Lorimer, X. H. Feng, K. H. Tan, S. P. Frigo, R. A. Rosenberg, D. C. Houghton, and B. Bryskiewicz, “Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence”, Nature 363 (1993) 331–334.
    [3] J. Heitmann, F. Muller, M. Zacharias, and U. Gosel, “Silicon Nanocrystals: Size Matters”, Advanced Materials 17 (2005) 795–803.
    [4] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires”, Optics Express 18 (2010) A286–A292.
    [5] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal-Assisted Chemical Etching of Silicon: A Review”, Advanced Materials 23 (2011) 285–308.
    [6] J. Y. Oh, J. T. Park, H. J. Jang, W. J. Cho, and M. S. Islam, “3D-Transistor Array Based on Horizontally Suspended Silicon Nano-bridges Grown via a Bottom-Up Technique”, Advanced Materials 26 (2014) 1929–1934.
    [7] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”, Nature 449 (2007) 885–890.
    [8] J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures”, Nature Nanotechnology 7 (2012) 743–748.
    [9] Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, and G. Ji, “Improved antireflection properties and optimized structure for passivation of well-separated,vertical silicon nanowire arrays for solar cell applications”, Solar Energy Materials & Solar Cells 125 (2014) 248–252
    [10] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-performance lithium battery anodes using silicon nanowires”, Nature Nanotechnology 3 (2008) 31–35.
    [11] J.-in Hahm, and C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors”, Nano Letters 4 (2004) 51–54.
    [12] S. Dhanekar, and S. Jain, Porous silicon biosensor: Current status”, Biosensors and Bioelectronics 41(2013) 54–64.
    [13] J. S. Noh, H. Kim, B. S. Kim, E. Lee, H. H. Cho, and W. Lee, “High-performance vertical hydrogen sensors using Pd-coated rough Si nanowire”, Journal of Materials Chemistry 21 (2011) 15935–15939.
    [14] F. Demami, L. Ni, R. Rogel, A. C. Salaun, and L. Pichon, “Silicon nanowires based resistors as gas sensors”, Sensors and Actuators B 170 (2012) 158–162.
    [15] M Choueib, R. Marte, C. S. Cojocaru, A. Ayari, P. Vincent, and S. T. Purcell, “Current Saturation in Field Emission from H-Passivated Si Nanowires”, ACS Nano 6 (2012) 7463–7471.
    [16] Y. M. Chang, M. C. Liu, P. H. Kao, C. M. Lin, H. Y. Lee,and J. Y. Juang, “Field Emission in Vertically Aligned ZnO/Si-Nanopillars with Ultra Low Turn-On Field”, ACS Applied Materials & Interfaces 4 (2012) 1411–1416.
    [17] K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible Polymer-Embedded Si Wire Arrays”, Advanced Materials 21 (2009) 325–328.
    [18] A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208–211.
    [19] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y. Tan, “Silicon nanowhiskers grown on〈111〉Si substrates by molecular-beam epitaxy”, Applied Physics Letters 84 (2004) 4968–4970.
    [20] J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV-nanoimprint lithography”, Microelectronic Engineering 87 (2010) 1711–1715.
    [21] J. C. Lin, W. L. Chen, and W. C. Tsai, “Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction”, Optics Express 14 (2006) 9764–9769.
    [22] J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation”, Nano Letters 11 (2011) 1300–1305.
    [23] T. Qiu, and P. K. Chu, “Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials”, Materials Science and Engineering R 61 (2008) 59–77.
    [24] S. Qinkea, J. Weia, K. Wang, X. Guia, C. Maa, H. Zhua, Y. Jiaa, X. Lia, N. Guoa, and D. Wua, “Fabrication and field emission properties of multi-walled carbon nanotube/silicon nanowire array”, Journal of Physics and Chemistry of Solids 71 (2010) 708–711.
    [25] C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma, and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays”, Physica E 30 (2005) 169–173.
    [26] X. Chen, C. K. Y. Wong, C. A. Yuan, and G. Zhang, “Nanowire-based gas sensors”, Sensors and Actuators B 177 (2013) 178–195.
    [27] J. Kanungo, H. Saha, and S. Basu, “Effect of porosity on the performance of surface modified porous silicon hydrogen sensors”, Sensors and Actuators B 147 (2010) 145–151.
    [28] N. K. Ali, M. R. Hashim, and A. A. Aziz, “Effects of surface passivation in porous silicon as H2 gas sensor”, Solid-State Electronics 52 (2008) 1071–1074.
    [29] G. Barillaro, A. Nannini, and F. Pieri, “APSFET: a new, porous silicon-based gas sensing device”, Sensors and Actuators B 93 (2003) 263–270.
    [30] K. Q. Peng,X. Wang, and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires”, Applied Physics Letters 95 (2009) 243112/1–243112/3.
    [31] K. Yu, and J. Chen, “Enhancing Solar Cell Efficiencies through 1-D Nanostructures”, Nanoscale Research Letters 4 (2008) 1–10.
    [32] J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang, and J. H. Lee, “Optimal design for antireflective Si nanowire solar cells”, Solar Energy Materials & Solar Cells 112 (2013) 84–90.
    [33] H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules”, Applied Physics Letters 95 (2009) 123501/1–123501/3.
    [34] L. Hu, and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications”, Nano Letters 7 (2007) 3249–3252.
    [35] T. Song, S. T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge”, Nano Energy 1 (2012) 654–673.
    [36] X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp, W. K. Kwok, and T. Xu, “Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires Formed on Filtration Membranes”, Nano Letters 11 (2011) 262–268.
    [37] T. Hubert, L. B. Brett, G. Black, and U. Banach, “Hydrogen sensors – A review”, Sensors and Actuators B 157 (2011) 329–352.
    [38] Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, and M. Mori, “Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires”, Sensors and Actuators B 135 (2009) 524–529.
    [39] X. Xu, D. Wang, J. Liu, P. Sun, Y. Guan, H. Zhang, Y. Sun, F. Liu, X. Liang, Y. Gao, and G. Lu, “Template-free synthesis of novel In2O3 nanostructures and their application to gas sensors”, Sensors and Actuators B 185 (2013) 32–38.
    [40] S. Srivastava, S. Kumar, V. N. Singh, M. Singh, and Y. K. Vijay, “Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing”, International Journal of Hydrogen Energy 36 (2011) 6343–6355.
    [41] R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cane, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen”, Sensors and Actuators B 149 (2010) 352–361.
    [42] J. Kanungo, H. Saha, and S. Basu, “Effect of porosity on the performance of surface modified porous silicon hydrogen sensors”, Sensors and Actuators B 147 (2010) 145–151.
    [43] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution”, Solar Energy Materials & Solar Cells 93 (2009) 1773–1778.
    [44] P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions”, Solar Energy Materials & Solar Cells 70 (2001) 103–113.
    [45] M. Rosa, M. Allegrezza, M. Canino, C. Summonte, and A. Desalvo, “TMAH-textured, a-Si/c-Si, heterojunction solar cells with 10% reflectance”, Solar Energy Materials & Solar Cells 95 (2011) 2987–2993.
    [46] A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers”, Solar Energy Materials & Solar Cells 93 (2009) 1276–1280.
    [47] H. Li, W. Liu, A. Liu, F. Qiao, Z. Hu, and Y. Liu, “Metal grids-based texturization of monocrystalline silicon wafers for solar cells”, Solar Energy Materials & Solar Cells 94 (2009) 942–945.
    [48] M. Amouzgar, and M. Kahrizi, “A new approach for improving the silicon texturing process using gas-lift effect”, Journal of Physics D: Applied Physics 45 (2012) 105102/1–105102/7.
    [49] J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask”, Solar Energy Materials & Solar Cells 94 (2010) 2091–2093.
    [50] K. J. Weber, and A. W. Blakers, “A Novel Silicon Texturization Method Based on Etching Through a Silicon Nitride Mask”, Progress in Photovoltaics: Research and Applications 13 (2005) 691–695.
    [51] E. C. Garnett, and P. Yang, “Silicon Nanowire Radial p-n Junction Solar Cells”, Journal of the American Chemical Society 130 (2008) 9224–9225.
    [52] E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park, and M. A. Green, “Silicon quantum dot/crystalline silicon solar cells”, Nanotechnology 19 (2008) 245201/1–245201/5.
    [53] X. J. Hao, E. C. Cho, G. Scardera, Y. S. Shen, E. B. Amalric, D. Bellet, G. Conibeer, M. A. Green, “Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells”, Solar Energy Materials & Solar Cells 93 (2009) 1524–1530.
    [54] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications”, Nanotechnology 19 (2008) 255703/1–255703/6.
    [55] V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters”, Nano Letters 9 (2009) 1549–1554.
    [56] O. Gunawan, and S. Guha, “Characteristics of vapor–liquid–solid grown silicon nanowire solar cells”, Solar Energy Materials & Solar Cells 93 (2009) 1388–1393.
    [57] B. Dou, R. Jia, H. Li, C. Chen, W. Ding, Y. Meng, Z. Xing, X. Liu, and T. Ye, “High performance radial p-n junction solar cell based on silicon nanopillar array with enhanced decoupling mechanism”, Applied Physics Letters 101 (2012) 183901/1–183901/4.
    [58] K. A. Salman, Z. Hassan, and K. Omar, “Effect of Silicon Porosity on Solar Cell Efficiency”, International Journal of Electrochemical Science 7 (2012) 376–386.
    [59] S. K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, and P. K. Singh, “Silver catalyzed nano-texturing of silicon surfaces for solar cell applications”, Solar Energy Materials & Solar Cells 100 (2012) 33–38.
    [60] K. Q. Peng, X. Wang, L. Li, Y. Hu, and S. T. Lee, “Silicon nanowires for advanced energy conversion and storage”, Nano Today 8 (2013) 75–97.
    [61] Y. He, C. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications”, Nano Today 5 (2010) 282–295.
    [62] M. Cavarroc,M. Mikikian, G. Perrier, and L. Boufendi, “Single-crystal silicon nanoparticles: An instability to check their synthesis”, Applied Physics Letters 89 (2006) 013107/1–013107/3.
    [63] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, “Small-Diameter Silicon Nanowire Surfaces”, Science 299 (2003) 1874–1877.
    [64] D. Zschech, D. H. Kim, A. P. Milenin, R. Scholz, R. Hillebrand, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gosele, “Ordered Arrays of <100>-Oriented Silicon Nanorods by CMOS-Compatible Block Copolymer Lithography”, Nano Letters 7 (2007) 1516–1520.
    [65] H. C. Ko, A. J. Baca, and J. A. Rogers, “Bulk Quantities of Single-Crystal Silicon Micro-/Nanoribbons Generated from Bulk Wafers”, Nano Letters 6 (2006) 2318–2324.
    [66] R. S. Wagner, and W. C. Ellis, “Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth”, Applied Physics Letters 4 (1964) 89–90.
    [67] A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208–211.
    [68] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter modification of silicon nanowires by ambient gas”, Applied Physics Letters 75 (1999) 1842–1844.
    [69] N. Fukata,T. Oshima, N. Okada, T. Kizuka, T. Tsurui, S. Ito, and K. Murakami, “Phonon confinement in silicon nanowires synthesized by laser ablation”, Physica B 376–377 (2006) 864–867.
    [70] P. Werner, N. D. Zakharov, G. Gerth, L. Schubert, and U. Gosele, “On the formation of Si nanowires by molecular beam epitaxy”, International Journal of Materials Research 97 (2006) 1008–1015.
    [71] M. Hasan, M. F. Huq, and Z. H. Mahmood, “A review on electronic and optical properties of silicon nanowire and its different growth techniques”, SpringerPlus 2 (2013) 151/1–151/9.
    [72] K. Trivedi, H. Yuk, H. C. Floresca, M. J. Kim, and W. Hu, “Quantum Confinement Induced Performance Enhancement in Sub-5-nm Lithographic Si Nanowire Transistors”, Nano Letters 11 (2011) 1412–1417.
    [73] E. Garnett, and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells”, Nano Letters 10 (2010) 1082–1087.

    [74] Y. J. Hung, S. L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption”, Optics Express 18 (2010) 6841–6852.
    [75] J. C. Lin, W. L. Chen, and W. C. Tsai, “Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction”, Optics Express 14 (2006) 9764–9769.
    [76] T. Unagami, “Formation Mechanism of Porous Silicon Layer by Anodization in HF  Solution”, Journal of The Electrochemical Society 127 (1980) 476–483.
    [77] M. B. de la Mora, M. Ocampo, R. Doti, J. E. Lugo, and J. Faubert, Porous Silicon Biosensors, State of the Art in Biosensors - General Aspects, Dr. Toonika Rinken (Ed.), InTech, (2013).
    [78] H. S. Jang, H. J. Choi, and S. M. Kang, “Formation of p-Silicon Wire by Electrochemical Etching Using Positive Photoresist as an Etch Mask in Organic Electrolyte”, Electrochemical and Solid-State Letters 14 (2011) D84–D88.
    [79] K. Q. Peng, Y.-J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Advanced Materials 14 (2002) 1164–1167.
    [80] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays”, Angewandte Chemie International Edition 44 (2005) 2737–2742.
    [81] K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Advanced Functional Materials 18 (2008) 3026–3035.
    [82] X. Fang, Y. Bando, U. K. Gautam, C. Ye, and D. Golberg, “Inorganic semiconductor nanostructures and their field-emission applications”, Journal of Materials Chemistry 18 (2008) 509–522.
    [83] V. S. Kale, R. R. Prabhakar, S. S. Pramana, M. Rao, C. H. Sow, K. B. Jinesh, and S. G. Mhaisalkar, “Enhanced electron field emission properties of high aspect ratio silicon nanowire–zinc oxide core–shell arrays”, Physical Chemistry Chemical Physics 14 (2012) 4614–4619.
    [84] D. Stievenard, and D. Deresmes, “Are electrical properties of an aluminum–porous silicon junction governed by dangling bonds?”, Applied Physics Letters 67 (1995) 1570–1572.
    [85] K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, “Palladium/silicon nanowire Schottky barrier-based hydrogen sensors”, Sensors and Actuators B 145 (2010) 232–238.
    [86] T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production”, NPG Asia Materials 2 (2010) 96–102.
    [87] K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, “Removing structural disorder from oriented TiO2 nanotube arrays reducing the dimensionality of transport and recombination in dye-sensitized solar cells”, Nano Letters 7 (2007) 3739–3746.
    [88] M. S. Dresselhaus, G. Dresselhaus, and P. H. Avouris, “Carbon Nanotube: Synthesis, Structure, Properties, and Applications Series”, Springer Series in Topics in Applied Physics, Berlin 80 (2001).
    [89] S. Han, and J. Ihm, “Role of the localized states in field emission of carbon nanotubes”, Physical Review B 61 (2000) 9986–9989.
    [90] K. F. Chen, K. C. Chen, Y. C. Jiang, L. Y. Jiang, Y. Y. Chang, M. C. Hsiao, and L. H. Chan, “Field emission image uniformity improvement by laser treating carbon nanotube powders”, Applied Physics Letters 88 (2006) 193127/1–193127/3.
    [91] F. Zhao, D. D. Zhao, S. L. Wu, G. A. Cheng, and R. T. Zheng, “Fabrication and Electron Field Emission of Silicon Nanowires Synthesized by Chemical Etching”, Journal of the Korean Physical Society 55 (2009) 2681–2684.
    [92] X. J. Li and W. F. Jiang, “Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array”, Nanotechnology 18 (2007) 065203/1–065203/5.
    [93] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Applied Physics Letters 76 (2000) 2071–2073.
    [94] Z. S. Hua, F. Y. Hung, S. J. Chang, B. R. Huang, B. C. Lin, K. J. Chen, and W. I. Hsu, “Nanostructural characteristics of oxide-cap GaN nanotips by iodine–gallium ions etching”, Journal of Alloys and Compounds 509 (2011) 2360–2363.
    [95] Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, and I. N. Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond & Related Materials 17 (2008) 753–757.
    [96] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching”, Applied Physics Letters 93 (2008) 133109/1–133109/3.
    [97] J. Y. Oh, H. J. Jang, W. J. Cho, and M. S. Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane”, Sensors and Actuators B 171–172 (2012) 238-243.
    [98] L. Campanella, “Principles of Chemical Sensors”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 299 (1990) 73–74.
    [99] B. R. Huang, and T. C. Lin, “A novel technique for fabrication of horizontally-aligned CNTs nanostructure for hydrogen gas sensing”, International Journal of Hydrogen Energy 36 (2011) 15919–15926.
    [100] T. Qiu, X. L. Wu, J. C. Shen, P. C. T. Ha, and P. K. Chu, “Surface-enhanced Raman characteristics of Ag cap aggregates on silicon nanowire arrays”, Nanotechnology 17 (2006) 5769–5772.
    [101] L. Lin, X. Sun, R. Tao, J. Feng, and Z. Zhang, “The synthesis and photoluminescence properties of selenium-treated porous silicon nanowire arrays”, Nanotechnology 22 (2011) 075203/1–075203/6
    [102] J. C. Lin, B. R. Huang, and Y. K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors”, Sensors and Actuators B 184 (2013) 27–32.
    [103] R. K. Joshi, and A. Kumar, “Room temperature gas detection using silicon nanowires”, Materials Today 14 (2011) 1–2.
    [104] J. J. Hassan, M. A. Mahdi, C. W. Chin, H. Abu-Hassan, and Z. Hassan, “Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method”, Journal of Alloys and Compounds 546 (2013) 107–111.
    [105] O. Lupan, L. Chow, Th. Pauporte, L. K. Ono, B. R. Cuenya, and G. Chai, “Highly sensitive and selective hydrogen single-nanowire nanosensor”, Sensors and Actuators B 173 (2012) 772–780.
    [106] B. R. Huang, and J. C. Lin, “Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors”, Sensors and Actuators B 174 (2012) 389–393.
    [107] Z. Li,D. Ding, and C. Ning, “p-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures”, Nanoscale Research Letters 8 (2013) 25/1–25/8.
    [108] Z. Li, D. Ding, and C. Ning, “Pd-doped reduced graphene oxide sensing films for H2 detection”, Nanoscale Research Letters 183 (2013) 478–487.
    [109] T. C. Lin, and B. R. Huang, “Temperature effect on hydrogen response for cracked carbon nanotube/nickel (CNT/Ni) composite film with horizontally aligned carbon nanotubes”, Sensors and Actuators B 185 (2013) 548–552.
    [110] N. Naderi, M. R. Hashim, and T. S. T. Amran, “Enhanced physical properties of porous silicon for improved hydrogen gas sensing”, Superlattices and Microstructures 51 (2012) 626–634.
    [111] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications”, Small 1 (2005) 1062–1067.
    [112] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates”, Optics Letters 24 (1999) 1422–1424.
    [113] C. C. Striemera, and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications”, Applied Physics Letters 81 (2002) 2980–2982.
    [114] S. H. Baek, H. S. Jang, and J. H. Kim, “Characterization of optical absorption and photovoltaic properties of silicon wire solar cells with different aspect ratio”, Current Applied Physics 11 (2011) S30–S33.
    [115] D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells”, Solar Energy Materials & Solar Cells 91 (2007) 1698–1706.
    [116] S. C. Shiu, S. B. Lin, S. C. Hung, and C. F. Lin, “Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching”, Applied Surface Science 257 (2011) 1829–1834.
    [117] O. Gunawan, and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells”, Solar Energy Materials & Solar Cells 93 (2009) 1388–1393.
    [118] O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, and S. Guha, “High performance wire-array silicon solar cells”, Progress in Photovoltaics: Research and Applications 19 (2011) 307–312.
    [119] D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance”, Solar Energy Materials & Solar Cells 95 (2011) 215–218.
    [120] X. Li, J. Li, T. Chen, B. K. Tay, J. Wang, and H. Yu, “Periodically aligned Si nanopillar arrays as efficient antireflection layer for solar cell applications”, Nanoscale Research Letters 5 (2010) 1721–1726.
    [121] H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell”, Applied Physics Letters 98 (2011) 151116/1–151116/3.
    [122] Y. Cheng, Z. Gang, L. D. Young, L. H. Min, L. Y. Dae, Y. W. Jong, P. Y. Jun, and K. J. Min, “Self-assembled wire arrays and ITO contacts for silicon nanowire solar cell applications”, Chinese Physics Letters 28 (2011) 035202/1–035202/3.
    [123] T. Collins, “Introduction to ImageJ for Light Microscopy”, Microsc Microanal 13 (2007) 1674–1675.
    [124] C. Chen, R. Jia, H. Li, Y. Meng, X. Liu, T. Ye, S. Kasai, H. Tamotsu, N. Wu, S. Wang, and J. Chu, “Electrode-contact enhancement in silicon nanowire-array-textured solar cells”, Applied Physics Letters 98 (2011) 143108/1–143108/3.
    [125] B. R. Huang, Y. K. Yang, T. C. Lin, and W. L. Yang, “A simple and low-cost technique for silicon nanowire arrays based solar cells”, Solar Energy Materials & Solar Cells 98 (2012) 357–362.
    [126] A. Rohatgi, P. Doshi, J. Moschner, T. Lauinger, A. G. Aberle, and D. S. Ruby, “Comprehensive Study of Rapid, Low-Cost Silicon Surface Passivation Technologies”, IEEE Transactions on Electron Devices 47 (2000) 987–993.
    [127] X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size”, Nanotechnology 24 (2013) 235402/1–235402/8.

    QR CODE