簡易檢索 / 詳目顯示

研究生: 吳凱群
Kai-chun Wu
論文名稱: 準直矽奈米線陣列及其應用於太陽能電池
Vertically-aligned Silicon Nanowire Arrays for Solar Energy Applications
指導教授: 李三良
San-liang Lee
口試委員: 吳靜雄
none
劉政光
none
葉秉慧
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 奈米線太陽能電池
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗反射技術可使入射光與太陽能電池元件有較佳的耦合,但現行抗反射技術在反射率、頻寬、角度相依性、尺寸、均勻度以及成本都具有或多或少的缺點。本論文提出使用鍍銀薄膜,產生金屬誘發蝕刻機制,實現在矽基材上可製作出具有低反射率,大頻寬,低角度相依性,可大面積製作且均勻度佳的矽奈米線陣列抗反射膜。並分析不同高度下其奈米線陣列之反射率,穿透率,吸收率的變化。我們發現垂直排列矽奈米線在高度為0.8 贡m時,太陽光譜加權之光吸收值即可達到0.9且無明顯之次能隙吸收現象;反之,6.98 贡m長之矽奈米線雖有較低的光反射率,但其較高之次能隙吸收值顯示此結構產生的表面復合效應相當嚴重。為了更加提昇短矽奈米線的光吸收特性,我們進一步使用氫氧化鉀蝕刻液蝕刻奈米線,得到具有尖塔形貌之折射率漸變結構,成功地降低奈米線之光反射率。
    最後我們利用擴散製程實現具有奈米線薄膜之太陽能元件,其開路電壓、短路電流密度、填充因子以及轉換效率分別為0.51V,19.54mA/cm2、0.54以及5.57%。比較相同製程所做之一般型太陽能電池轉換效率為4.26%,奈米線抗反層提升1.31%的轉換效率。


    Surface antireflection techniques are important for coupling incident light into solar cells. But current antireflection techniques are not all perfect at reflectivity, bandwidth, angular, independency, size, cost and uniformity。In this thesis, we propose and novel approaches to fabricate tapered silicon nanowire array using simple wet chemical etching process. This method enables large wafer-scale fabrication with low cost and improved uniformity.
    We investigate that reflectance, transmittance, and absorption rate for different heights of silicon nanowire arrays. We found that when vertically-aligned silicon nanowires is of 0.8μm high, the spectrum of solar weighted absorption can reach to 0.9 without absorptions of visible sub-energy gap phenomenon. On the contrary, the 6.98μm long SiNW has low optical reflectivity, but its higher sub-bandgap absorption values show the effect of more surface defects.
    In order to upgrade the light absorption character of short nanowires array, we apply a post chemical etching process with a diluted KOH to achieve index of gradual refraction architecture. The result is that we successfully lower the light index of refraction of SiNWs.

    第一章 緒論 1 1.1 前言 1 1.2 太陽能電池種類介紹 2 1.3 抗反射技術 7 1.3.1 抗反射鍍膜 (Anti-reflection Coatings) 8 1.3.2 粗糙化處理 (Texture) 9 1.3.3 光子晶體 (Photonic Crystal) 12 1.3.4 奈米線陣列 (Nanowire Array) 12 1.3.5 多層折射率漸變鍍膜 (Multilayer graded-index coating) 14 1.4 研究動機 15 1.5 論文架構 16 第二章 文獻探討 17 2.1 奈米線製備方式 17 2.2 氣-液-固VLS(vapor-liquid-solid)法: 17 2.3 無電鍍蝕刻法 19 2.4 電子束微影蝕刻法 21 第三章 單晶準直矽奈米線陣列製作及特性分析 23 3.1 矽奈米線製程 23 3.1.1 製程步驟 23 3.1.2 銀薄膜厚度 25 3.1.3 蝕刻溶液濃度 27 3.1.4 環境溫度與蝕刻時間 29 3.2 奈米線之材料特性 30 3.3 矽奈米線之光學特性 31 3.3.1 大面積奈米線陣列 31 3.3.2 奈米線陣列反射率與穿透率量測 33 3.3.3 KOH蝕刻 39 3.3.4 太陽能加權吸收率 41 第四章 太陽能元件製作 43 4.1 太陽能元件工作原理 43 4.2 太陽能電池參數 46 4.3 太陽能電池製程 48 4.3.1 擴散製程 48 4.3.2 無抗反射結構太陽能電池製程 50 4.4 奈米線太陽能電池製作與量測 53 第五章 結論 56 5.1 成果與討論 56 5.2 未來研究與方向 57

    [1] Z. Yu, L. Chen, W. Wu et al., “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, no. 5, pp. 2089, 2003.
    [2] X. Wang, E. Perzon, J. L. Delgado et al., “Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative,” Applied Physics Letters, vol. 85, no. 21, pp. 5081, 2004.
    [3] J. J. Kelly, and H. G. G. Philipsen, “Anisotropy in the wet-etching of semiconductors,” Current Opinion in Solid State and Materials Science, vol. 9, no. 1-2, pp. 84-90, 2005.
    [4] K. Peng, Y. Xu, Y. Wu et al., “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, vol. 1, no. 11, pp. 1062-7, Nov, 2005.
    [5] T. Trifonov, A. Rodríguez, F. Servera et al., “High-aspect-ratio silicon dioxide pillars,” physica status solidi (a), vol. 202, no. 8, pp. 1634-1638, 2005.
    [6] V. Gowrishankar, N. Miller, M. D. McGehee et al., “Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography,” Thin Solid Films, vol. 513, no. 1-2, pp. 289-294, 2006.
    [7] G. Purvis, “Two-year time slot for solar,” III-Vs Review, vol. 19, no. 4, pp. 25-28, 2006.
    [8] H. J. H. Chen, and C. S. Hung, “Fabrication of high-aspect-ratio nanotips integrated with single-crystal silicon cantilevers,” Nanotechnology, vol. 18, no. 35, pp. 355305, 2007.
    [9] S. W. Glunz, “High-Efficiency Crystalline Silicon Solar Cells,” Advances in OptoElectronics, vol. 2007, pp. 1-15, 2007.
    [10] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Advanced Materials, vol. 19, no. 5, pp. 744-748, 2007.
    [11] K. Peng, M. Zhang, A. Lu et al., “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Applied Physics Letters, vol. 90, no. 16, pp. 163123, 2007.
    [12] L. Tsakalakos, J. Balch, J. Fronheiser et al., “Silicon nanowire solar cells,” Applied Physics Letters, vol. 91, no. 23, pp. 233117, 2007.
    [13] M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 6, pp. 2179, 2008.
    [14] A. I. Hochbaum, R. Chen, R. D. Delgado et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp. 163-7, Jan 10, 2008.
    [15] K. J. Morton, G. Nieberg, S. Bai et al., “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology, vol. 19, no. 34, pp. 345301, Aug 27, 2008.
    [16] K. Peng, J. Jie, W. Zhang et al., “Silicon nanowires for rechargeable lithium-ion battery anodes,” Applied Physics Letters, vol. 93, no. 3, pp. 033105, 2008.
    [17] K. Peng, A. Lu, R. Zhang et al., “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Advanced Functional Materials, vol. 18, no. 19, pp. 3026-3035, 2008.
    [18] K. Peng, X. Wang, and S.-T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Applied Physics Letters, vol. 92, no. 16, pp. 163103, 2008.
    [19] G. Roelkens, D. Vermeulen, D. Van Thourhout et al., “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Applied Physics Letters, vol. 92, no. 13, pp. 131101, 2008.
    [20] T. Stelzner, M. Pietsch, G. Andra et al., “Silicon nanowire-based solar cells,” Nanotechnology, vol. 19, no. 29, pp. 295203, Jul 23, 2008.
    [21] S.-W. Chang, V. P. Chuang, S. T. Boles et al., “Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated using Block-Copolymer Lithography and Metal-Assisted Etching,” Advanced Functional Materials, vol. 19, no. 15, pp. 2495-2500, 2009.
    [22] Z. Fan, D. J. Ruebusch, A. A. Rathore et al., “Challenges and prospects of nanopillar-based solar cells,” Nano Research, vol. 2, no. 11, pp. 829-843, 2009.
    [23] O. Gunawan, and S. Guha, “Characteristics of vapor–liquid–solid grown silicon nanowire solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1388-1393, 2009.
    [24] D. H. Ko, J. R. Tumbleston, L. Zhang et al., “Photonic crystal geometry for organic solar cells,” Nano Lett, vol. 9, no. 7, pp. 2742-6, Jul, 2009.
    [25] F. C. Krebs, “Pad printing as a film forming technique for polymer solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 484-490, 2009.
    [26] B. Paivanranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology, vol. 20, no. 37, pp. 375301, Sep 16, 2009.
    [27] K.-Q. Peng, X. Wang, X. Wu et al., “Fabrication and photovoltaic property of ordered macroporous silicon,” Applied Physics Letters, vol. 95, no. 14, pp. 143119, 2009.
    [28] L. Cao, P. Fan, A. P. Vasudev et al., “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett, vol. 10, no. 2, pp. 439-45, Feb 10, 2010.
    [29] T. Yokoyama, H. Asoh, and S. Ono, “Site-selective anodic etching of InP substrate using self-organized spheres as mask,” physica status solidi (a), vol. 207, no. 4, pp. 943-946, 2010.
    [30] J. Zhu, C. M. Hsu, Z. Yu et al., “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett, vol. 10, no. 6, pp. 1979-84, Jun 9, 2010.

    無法下載圖示 全文公開日期 2017/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE