簡易檢索 / 詳目顯示

研究生: 林政安
Zheng-an Lin
論文名稱: 非線性時變振動系統之主動式減振器設計
Active Vibration Absorber Design for Non-autonomous Vibration Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 姜嘉瑞
none
簡銘志
Ming-Chih Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 減振器適應控制函數近似法
外文關鍵詞: Active Vibration Absorber, Adaptive control, Function Approximation Techniques
相關次數: 點閱:239下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對單自由度振動系統進行適應性控制之研究。當系統參數未知而且具有非線性行為時,傳統被動減振器的減振效果不佳。本文以函數近似法(Function Approximation Technique, FAT)設計適應控制器,並結合傳統減振器提出兩種控制架構來抑制系統的振動。本論文更進一步提出無被動減振器的控制架構。最後由模擬證明,無被動減振器之控制架構具有良好的性能表現。


Traditional passive vibration absorbers are designed based on its linearized model and precise knowledge of system parameters. Once the system contains strong nonlinearities and/or uncertainties, most passive designs fail to give satisfactory performance. Active vibration absorbers, however, can frequently provide adequate performance when the system has additional effects other than its linear dynamics. The robust active absorber is very effective when the variation bounds of the nonlinearities or uncertainties are available. The adaptive active absorber, on the other hand, is useful when the nonlinearities or uncertainties are linearly parameterizable into a known regressor and an unknown constant parameter vector. However, if the system includes general uncertainties (i.e., time-varying and the variation bounds are not available), then both the robust or adaptive designs are infeasible. Here, in this paper, we would like to investigate the problem for the design of an adaptive vibration absorber for the system containing general uncertainties. The function approximation technique (FAT) is applied to represent the uncertainties using finite-term basis function first, and then update laws can be found by the Lyapunov-like analysis. The closed loop system is proved with rigorous mathematics to be uniformly ultimately bounded. Simulation cases show the efficacy of the proposed design.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 V 第一章 緒論 1 1.1 振動理論探討 2 1.2 研究動機 7 1.3 論文架構 8 第二章 主動式控制架構一 10 2.1 系統描述 10 2.2 控制器設計 11 2.3 系統穩定度分析 13 2.4 暫態分析 17 2.5 電腦模擬 18 2.6 模擬結果討論 30 第三章 主動式控制架構二 31 3.1 系統描述 31 3.2 控制器設計 32 3.3 系統穩定度分析 34 3.4 暫態分析 36 3.5 電腦模擬 36 3.6 模擬結果討論 46 第四章 主動式控制架構三 47 4.1 系統描述 47 4.2 控制器設計 48 4.3 系統穩定度分析 49 4.4 暫態分析 51 4.5 電腦模擬 51 4.6 模擬結果與討論 55 第五章 結論與未來展望 57 參考文獻 58

[1] J. Q. Sun, M. R. Jolly and M. A. Norris, “Passive, Adaptive and Active Tuned Vibration Absorbers-A Survey,” Transactions of the ASME, Journal of Mechanical Design, Vol. 117 B, pp. 234-242, 1995.
[2] M. A. Franchek, M. W. Ryan and R. J. Bernhard, “Adaptive Passive Vibration Control,” Journal of Sound and Vibration, Vol. 189, Issue 5, pp. 565-585, 1996.
[3] V. A. Bapat and P. Prabhu, ”Optimum design of Lanchester damper for a viscously damped single degree of freedom system by using minimum force transmissibility criterion,” Journal of Sound and Vibration, Vol. 67, Issue 1, pp. 113-119, 1979.
[4] T. Asami, O. Nishihara and A. M. Baz, “Analytical Solutions to and Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems,” Transactions of the ASME, Journal of Vibration and Acoustics, Vol. 124, Issue 2, pp. 284-295, 2002.
[5] K. Liu and J. Liu, “The damped dynamic vibration absorbers: revisited and new result,” Journal of Sound and Vibration, Vol. 294, Issue 3-5, pp. 1181-1189, June 2005.
[6] P. L. Walsh and J. S. Lamancusa, “A variable stiffness vibration absorber for minimization of transient vibrations,” Journal of Sound and Vibration, Vol. 158, Issue 2, pp. 195-211, 1992.
[7] S. T. Wu and Y. J. Shao, “Adaptive vibration control using a virtual vibration absorber controller,” Journal of Sound and Vibration, Vol. 305, Issue 4-5, pp. 891-903, September 2007.
[8] R. A. Morgan and K. W. Wang, “Active-passive piezoelectric absorbers for systems under multiple non-stationary harmonic excitations,” Journal of Sound and Vibration, Vol. 255, Issue 4, pp. 685-700, August 2003.
[9] J. H. Koo, M. Ahmadian, M. Setareh and T. M. Murray, “In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers,” Journal of Vibration and Control, Vol. 10, Issue 2, pp. 163-174, February 2004.
[10] F. Beltrh-Carbajali, G. Silva-Navarro and H. Sira-Ramirez, “Active vibration absorbers using generalized PI and sliding-mode control techniques,” Proceedings of the American Control Conference, Vol. 1, pp. 791-796, 2003.
[11] N. Olgac and B. T. Holm-Hansen, “A Novel Active Vibration Absorption Technique: Delayed Resonator,” Journal of Vibration and Control, Vol. 176, Issue 1, pp. 93-104, September 1994.

[12] D. Filipovic and N. Olgac, “Delayed resonator with speed feedback – design and performance analysis,” Journal of Vibration and Control, Vol. 12, Issue 3, pp. 393-413, April 2002.
[13] D. Filipovic and D. Schroder, “Bandpass vibration absorber”, Journal of Vibration and Control, Vol. 214, Issue 3, pp. 553-566, July 1998.
[14] S. J. Huang, K. S. Huang and K. C. Chiou, “Development and application of a novel radial basis function sliding mode controller,” Mechatronics, Vol. 13, Issue 4, pp. 313-329, May 2003.
[15] S. T. Wu, Y. Y. Chiu and Y. C. Yeh, “Hybrid vibration absorber with virtual passive devices,” Journal of Vibration and Control, Vol. 299, Issue 1-2, pp. 247-260, January 2007.
[16] C. S. Chang and T. S. Liu, “LQG Controller for Active Vibration Absorber in Optical Disk Drive,” IEEE Transactions on Magnetics, Vol. 43, Issue 2, pp. 799-801, February 2007.
[17] A.C. Huang and Y.C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties”, Automatica, Vol. 40, Issue 11, pp. 1939-1945, 2004.
[18] 陳柏璋, 以函數近似為基礎之適應控制研究及其於主動式懸吊系統之應用, 國立台灣科技大學機械工程研究所, 博士學位論文, 2005.
[19] P. C. Chen and A. C. Huang, “Adaptive Multiple-surface Sliding Control of Hydraulic Active Suspension Systems Based on the Function Approximation Technique,” Journal of Vibration and Control, Vol. 11, Issue 5, pp. 685-706, May 2005.
[20] 黃安橋, “Comparison Lemma”, 台灣科技大學機械系講義, 2007.

QR CODE