簡易檢索 / 詳目顯示

研究生: 張家豪
Chia-hao Chang
論文名稱: 利用濺鍍法於玻璃基板沉積微晶矽鍺薄膜之性質研究
Preparation and Characterizations of Microcrystallite SiGe Films on Glass Substrates by Sputter Deposition
指導教授: 朱瑾
Jinn P. Chu
口試委員: 黃柏仁
Bohr-ran Huang
王復民
Fu-ming Wang
張佳文
Chia-wen Chang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 95
中文關鍵詞: 微晶矽鍺磁控濺鍍結晶度霍爾效應懸浮鍵光輻射引致性能衰退效應
外文關鍵詞: microcrystal SiGe, RF sputtering, crystallinity degree, Hall Effect, dangling bond, Staebler-Wronski Effect
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是採用射頻磁控濺鍍法於康寧玻璃型號1737 基板沉積微晶矽鍺薄膜,使用的靶材為鍺錠貼附於矽靶上並控制鍺元素原子比20 % 來共鍍沉積,在沉積過程中加熱基板至150oC,並控制不同的氫氣與氬氣的流量比來製備,其後經退火處理後再利用 X光繞射、 霍爾效應量測/導電性量測、 紫外/可見光光譜儀等儀器分析薄膜的結晶性、電性和光學等性質分析。
由實驗結果得知,隨著氫氣與氬氣的流量比增加其晶粒尺寸由10 nm增加到17.5 nm。不僅如此,隨著退火溫度的增加其晶粒尺寸也有顯著的變化。於電性分析中,透過霍爾效應儀器量測出薄膜於700oC退火下,其載子移動率隨著氫氣與氬氣的流量比增加而有明顯的變化,從5.04 cm2/Vs 增加至 12.21 cm2/V。
於光學分析中其結果顯示出,退火於600oC和700oC下微晶矽鍺薄膜其導電性隨著氫氣與氬氣的流量比增加而提高,分別由3.18x10-9 S/cm 增加至3.2x10-7 S/cm 和從1.34x10-7 S/cm增加至 5.14x10-7 S/cm。
微晶矽鍺薄膜結晶其結晶性質與著氫氣與氬氣的流量比和溫度有很大的關係,一個好的結晶性的微晶矽鍺太陽能電池其特性不但能改善非晶矽的缺點也能同時擁有結晶矽於光譜中吸收寬廣波長的優點。


Hydrogenated microcrystalline silicon germanium (μc-Si1-xGex:H) thin films were deposited on CORNING #1737 glass substrates with in-situ substrate heating at 150oC by radio frequency magnetron co-sputtering of Si and Ge, x≦0.2. H2/Ar ratios and annealing temperature were varied to obtain their influences on the crystal structure, electrical properties and optical properties of μc-Si1-xGex:H thin films which were analyzed with XRD, Hall effect measurement / conductivity measurement and UV-VIS spectrum, respectively.
The characterization results indicate that the crystallite size increases from 10 nm to 17.5 nm with increasing H2/Ar ratio from 0 to 1. After annealing, the crystallite size also increases with the temperature. For electrical property analyses, the Hall effect measurement results show carrier mobility increases from 5.04 cm2/Vs to 12.21 cm2/Vs when the H2/Ar ratio increases from 0 to 1. For the optical property, the μc-Si0.8Ge0.2:H thin film conductivity increases from 3.18x10-9 S/cm to 3.2x10-7 S/cm and from 1.34x10-7 S/cm to 5.14x10-7 S/cm when the H2/Ar ratio increases and annealing temperature is at 600oC and 700oC, respectively.
The μc-Si0.8Ge0.2:H crystal properties are found to vary with H2/Ar flow ratio and temperature. μc-Si0.8Ge0.2:H solar cell with good crystal properties or well as wide spectrum absorbability is potentially useful to replace amorphous Si.

摘要 I Abstract II Acknowledgements III Contents IV List of figure VI List of table VI Chapter 1 Introduction 1 Chapter 2 Background 2 2.1 The Properties of Si1-xGex Thin Film 2 2.1.1 The Properties of Si Thin Film 2 2.1.2 The Microcrystalline Si Thin Film Structure 3 2.1.3 The Structure and Properties of Si1-xGex Thin Films 5 2.2 The Methods of Growing Si1-xGex Thin Film 6 2.2.1 Chemical Vapor Deposition (CVD) 6 2.2.2 Physical Vapor Deposition (PVD) Method 8 2.2.3 Hydrogen Effect 10 2.2.4 Staebler-Wronski Effect and Dangling Bond 13 2.2.5 Crystallization 15 2.3 The Theory of Sputtering Thin Film Deposition 19 2.3.1 Plasma 19 2.3.2 The Principle of Sputtering 21 2.3.3 Ratio Frequency (RF) Magnetron Sputter System 25 2.3.4 Sputter Yields 27 2.3.5 Thin Film Deposition 30 2.3.6 The Microstructure of Thin Film 32 2.4 Objectives of This Study 35 Chapter 3 Experimental Procedures 36 3.1 Substrate and Target Preparation 36 3.2 Thin Film Deposition 38 3.3 Annealing 40 3.4 Material Characterization 41 3.4.1 Electron Probe Micro-Analyzer (EPMA) 41 3.4.2 Alpha- Step Surface Profilometry 42 3.4.3 X-ray Diffractometry (XRD) 43 3.4.4 Raman Measurement 44 3.4.5 Transmission Electron Microscope (TEM) 46 3.4.6 Hall Effect Measurement 48 3.4.7 Conductivity Measurement 53 3.4.8 UV-VIS Spectrophotometer 54 Chapter 4 Results and Discussion 55 4.1 Chemical Analysis (EPMA). 55 4.2 The Influences of H2/Ar Ratio on Si1-xGex Thin Film Properties 56 4.2.1 Deposition Rate 56 4.2.2 Crystal Structures of Si1-xGex Thin Films 58 4.2.3 Electrical Property Analyses 68 4.2.4 Optical Property Analyses 78 4.3 Annealing Effects on Crystallization 80 Chapter 5 Conclusions 81 References 83

[1] E. V. Jelenkovic, K. Y. Tong and Z. Sun, "Properties of crystallized Si1-xGex thin films deposited by sputtering," Journal of Vacuum Science & Technology A, vol. 15, pp. 2836-2841, 1997.
[2] J. Qi, Y. Yang and D. He, "Polycrystalline silicon–germanium films prepared by aluminum-induced crystallization," Journal of The Electrochemical Society, vol. 155, pp. H903, 2008.
[3] D. K. Biegelsen, R. A. Street, C. C. Tsai, and J. C. Knights, "Hydrogen evolution and defect creation in amorphous Si H alloys," Phys. Rev. B 20, vol. 20, pp. 4839–4846, 1979.
[4] D. Honda, I. Nakamura and M. Isomura, "Effects of the hydrogen plasma treatment on the thin-film polycrystalline SiGe," Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on pp. 1688 - 1691 2006.
[5] F. F. O. Vetterl, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech and H. Wagner, "Intrinsic microcrystalline silicon- a new material for photovoltaics," Solar Energy Materials & Solar Cells, vol. 62, pp. 97-108, 2000.
[6] A. Matsuda, "Microcrystalline silicon growth and device application," Journal of Non-Crystalline Solids, vol. 338-340, pp. 1-12, 2004.
[7] T. J. King, and K. C. Saraswat, "Polycrystalline silicon-germanium thin-film transistors," IEEE Transactions on Electron Devices, vol. 41, pp. 1581-1591, 1994.
[8] G. L. Patton, S. S. Iyer, J. M. C. Stork, B. S. Meyerson, D. L. Harame, "Heterojunction bipolar transistors using SiGe alloys," Electron Devices, IEEE Transactions on vol. 36, pp. 2043 - 2064 1989.
[9] R. People, "Physic and applications of GexSi1-xSi strained-layer heterostructures," IEEE Journal Quantum Electron, vol. 9, pp. 696-1710, 1986.
[10] C. Eisele, "Laser-crystallized microcrystalline SiGe alloys for thin film solar cells," Thin Solid Films, vol. 427, pp. 176-180, 2003.
[11] K. L. Chopra, P. D. Paulson and V. Dutta, "Thin film solar cells: an overview," Progress in Photovoltaics: Research and Applications, vol. 12, pp. 69-92, 2004.
[12] J. P. McVittie, T. J. King, K. C. Saraswat, "Electrical properties of heavily doped polycrystalline silicon-germanium films," IEEE Transactions on Electron Devices, vol. 41, pp. 228-232, 1994.
[13] H. Kawauchi, M. Isomura, T. Matsui and M. Kondo, "Microcrystalline silicon–germanium thin films prepared by the chemical transport process using hydrogen radicals," Journal of Non-Crystalline Solids, vol. 354, pp. 2109-2112, 2008.
[14] T. Matsui, C. W. Chang, T. Takada, M. Isomura, H. Fujiwara and M. Kondo, "Thin film solar cells based on microcrystalline silicon–germanium narrow-gap absorbers," Solar Energy Materials and Solar Cells, vol. 93, pp. 1100-1102, 2009.
[15] H. Takiguchi, K. Fukui and Y. Okamoto, "Annealing Temperature Dependence of Crystallization Process of SiGeAu Thin Film," Japanese Journal of Applied Physics, vol. 49, pp. 115602, 2010.
[16] A. Matsuda, "Formation kinetics and control of microcrystallite in μc-Si H from glow discharge plasma," Journal of Non-Crystalline Solids, vol. 59-60, pp. 767-774, 1983.
[17] M. K. L. Guo, M. Fukawa, K. Saitoh, and A. Matsuda, "High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition," Japanese Journal of Applied Physics, vol. 37, pp. L 1116-L 1118, 1998.
[18] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, 1999.
[19] S. Ghosh, A. De, S. Ray and A. K. Barua, "Role of hydrogen dilution and diborane doping on the growth mechanism of p‐type microcrystalline silicon films prepared by photochemical vapor deposition," Journal of Applied Physics., vol. 71, pp. 5205-5211, 1992.
[20] G. H. Lee and J. H. Yoon, "Growth of crystalline grains in microcrystalline silicon films," Physical Review B, vol. 73, 2006.
[21] L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finge and H. Wagner, "Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth," Philosophical Magazine A, vol. 77, pp. 1447-1460, 1998.
[22] Y. Mai, S. Klein, R. Carius, J. Wolff, A. Lambertz, F. Finger and X. Geng, "Microcrystalline silicon solar cells deposited at high rates," Journal of Applied Physics, vol. 97, pp. 114913, 2005.
[23] N. Layadi, P. R. Cabarrocas, B. Drévillon and I. Solomon, "Real-time spectroscopic ellipsometry study of the growth of amorphous and microcrystalline silicon thin films prepared by alternating silicon deposition and hydrogen plasma treatment," Physical Review B, vol. 52, pp. 5136-5143, 1995.
[24] K. Y. K. Nakamura, S. Takeoka and I. Shimizu, "Roles of atomic hydrogen in chemical annealing," Japanese Journal of Applied Physics, vol. 34, pp. 442-449, 1995.
[25] R. Crandall, "Defect relaxation in amorphous silicon: Stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect," Physical Review B, vol. 43, pp. 4057-4070, 1991.
[26] W. Beyer, "Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon," Solar Energy Materials and Solar Cells, vol. 78, pp. 235-267, 2003.
[27] C. S. Hong. and H. L. Hwang, "Reversible structural changes in discharge‐produced amorphous silicon," Journal of Applied Physics, vol. 61, pp. 4593-4597, 1987.
[28] T. Moustakas and W. Paul, "Transport and recombination in sputtered hydrogenated amorphous germanium," Physical Review B, vol. 16, pp. 1564-1576, 1977.
[29] G. A. N. Connei, A. J. Lewis, W. Paul and J. R. Pawlik, Proc. Int. Conf. Tetrally Bouded Amorphous Semicond, American Institute of Physics, New York, vol. 27, 1974.
[30] T. Su, P. Taylor, G. Ganguly and D. Carlson, "Direct role of hydrogen in the Staebler-Wronski Effect in hydrogenated amorphous silicon," Physical Review Letters, vol. 89, pp. 015502-1-015502-4, 2002.
[31] T. Shimizu, "Staebler-Wronski effect in hydrogenated amorphous silicon and related alloy films," Japanese Journal of Applied Physics, vol. 43, pp. 3257-3268, 2004.
[32] W. K. Choi, L. K. The, L. K. Bera, W. K. Chim, A. T. S. Wee and Y. X. Jie, "Microstructural characterization of rf sputtered polycrystalline silicon germanium films," Journal of Applied Physics, vol. 91, pp. 444, 2002.
[33] O.H. Roh, J. M. Seo, J. K. Lee, "The solid-phase crystallization mechanism of hydrogenated amorphous silicon–germanium alloy films," Journal of Non-Crystalline Solids, vol. 271, pp. 260-264, 2000.
[34] A. Rodrı́guez, T. Rodrı́guez, J. Olivares, J. Sangrador, P. Martı́n, O. Martı́nez, J. Jiménez and C. Ballesteros, "Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films," Journal of Applied Physics, vol. 90, pp. 2544, 2001.
[35] M. Gjukic, M. Buschbeck, R. Lechner, M. Stutzmann, "Aluminum-induced crystallization of amorphous silicon–germanium thin films," Applied Physics Letters, vol. 85, pp. 2134, 2004.
[36] Z. Meng, M. Wang, and Man Wong, "High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications," IEEE Transactions on Electron Devices, vol. 47, pp. 404-409, 2000.
[37] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, "Nickel induced crystallization of amorphous silicon thin films," Journal of Applied Physics, vol. 84, pp. 194-200, 1998.
[38] W. Knaepen, C. Detavernier, R. Vanmeirhaeghe, J. Jordansweet and C. Lavoie, "In-situ X-ray diffraction study of metal induced crystallization of amorphous silicon," Thin Solid Films, vol. 516, pp. 4946-4952, 2008.
[39] S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin and C. S. Lin, "Low temperature grown poly-SiGe thin film by Au metal-induced lateral crystallisation (MILC) with fast MILC growth rate," Electronics Letters, vol. 39, pp. 1612, 2003.
[40] H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, S. Yamaguchi and M. Miyao "Metal-induced solid-phase crystallization of amorphous SiGe films on insulator," Japanese Journal of Applied Physics, vol. 42, pp. 1933-1936, 2003.
[41] S. Sedky, M. Gromova, T. Vanderdonck, J. Celis and A. Witvrouw "Characterization of KrF excimer laser annealed PECVD SixGe1−x for MEMS post-processing," Sensors and Actuators A: Physical, vol. 127, pp. 316-323, 2006.
[42] Y. F. Tang, S. R. P. Silva, B. O. Boskovic, J. M. Shannon and M. J. Rose, "Electron field emission from excimer laser crystallized amorphous silicon," Applied Physics Letters, vol. 80, pp. 4154, 2002.
[43] M. Hatano, S. Moon, M. Lee, K. Suzuki, "In situ and ex situ diagnostics on melting and resolidification dynamics of amorphous and polycrystalline silicon thin films during excimer laser annealing," Journal of Non-Crystalline Solids, vol. 266-269, pp. 654-658, 2000.
[44] 唐偉忠, 薄膜材料製備原理、技術及應用. 北京: 冶金工業出版社, 2003.
[45] J. L. Vossen and W. Kern, Thin Film Processes, Academic Press New York, California, U.S.A , 1978.
[46] B. S. Houng, "Bending toughness and ductility improvements of bulk metallic glass by a Zr-based glass-forming film," M. S. Thesis, NTUST, 2010.
[47] http://www.etafilm.com.tw.
[48] http://www.tf.uni-kiel.de/~kr/thinfilms/tsf_i_chpt_5.pdf.
[49] C. Huang, G. H. Gilmer and T. D. Rubia, "An atomistic simulator for thin film deposition in three dimensions," Journal of Applied Physics, vol. 84, pp. 3636-3649, 1998.
[50] E. E. Salpeter, "Nucleation and growth of dust grains," Astrophysical Journal, vol. 193, pp. 579-584, 1974.
[51] M. Ohring, "Materials Science of Thin Films (Second Edition)," Academic Press, San Diego, pp. 495-558, 2002.
[52] J. A. Thornton, "Stress-related effects in thin films," Thin Solid Films, vol. 171, pp. 5-31, 1989.
[53] P. B. Barna and M. Adamik, "Fundamental structure forming phenomena of polycrystalline films and the structure zone models," Thin Solid Films, vol. 317, pp. 27–33, 1998.
[54] Y. Leng, Materials characterization: introduction to microscopic and spectroscopic methods , John Wiley and Sons, Hong Kong, 2008.
[55] J. C. Male, "Hall effect measurement in semiconducting chalcogenide glasses and liquids," Br. J. Appl. Phys., vol. 18, pp. 1543-1549, 1967.
[56] http://en.wikipedia.org/wiki/Hall_effect.
[57] E. Ramsden, Hall-effect sensors: theory and applications, second ed. Amsterdam, U.S.A: Elsevier, 2006.
[58] B. J. Choi, B. Kim, S. M. Jin, J. C. Koo, W. K. Chung, H. R. Choi and H. Moon, "Magnetic landmark-based position correction technique for mobile robots with hall sensors," Intelligent Service Robotics, vol. 3, pp. 99-113, 2010.
[59] T. Matsui, K. Ogata, C. W. Chang, M. Isomura and M. Kondo, "Carrier collection characteristics of microcrystalline silicon–germanium p–i–n junction solar cells," Journal of Non-Crystalline Solids, vol. 354, pp. 2468-2471, 2008.
[60] C. Kittel, Introduction to silid state physics 8th ed.: John Wiley &Sons, 2005.
[61] http://en.wikipedia.org/wiki/Shape_factor_(X-ray_diffraction).
[62] G. Yue, J. D. Lorentzen, J. Lin and D. Kan, "Photoluminescence and Raman studies in thin film materials - transition from amorphous to microcrystalline silicon," Applied Physics Letters, vol. 75, pp. 492-494, 1999.
[63] H. Watakabe, "Electrical and structural properties of poly-SiGe film formed by pulsed-laser annealing," Journal of Applied Physics, vol. 95, pp. 6457, 2004.
[64] Y. Chang, C. Dai, T. Cheng and C. Hsu, "Effect of annealing temperature for Si0.8Ge0.2 epitaxial thin films," Applied Surface Science, vol. 254, pp. 3105-3109, 2008.

無法下載圖示 全文公開日期 2016/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE