簡易檢索 / 詳目顯示

研究生: 吳俊緯
CHUN-WEI WU
論文名稱: 汽油均質進氣壓燃增程發電引擎之動態建模
Dynamic Modeling of a Homogeneous Charge Compression Ignition (HCCI) Range Extending Engine
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 盧昭暉
none
吳浴沂
none
呂百修
none
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 86
中文關鍵詞: 均質進氣壓燃(HCCI)引擎模型燃燒相位排氣節流閥
外文關鍵詞: HCCI Engine model, combustion timing, exhaust throttle
相關次數: 點閱:184下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文根據華擎500c.c.單缸引擎開發均質進氣壓燃(HCCI)燃燒模式下的引擎動態模型。研究中使用MATLAB SIMULINK建立具曲軸解析度的零維度模型,其中的動態方程式是由質量、能量守恆方程式與理想氣體方程式所得到。模型中包含汽門揚程、汽缸容積變化率、質量和氣體流率、進排氣歧管方程式、 汽缸方程式與燃燒模型及熱傳導模型。模型的輸入參數包括:引擎轉速、進氣溫度、噴油量、進排氣節流閥開度;而模型的輸出參數則包括:平均有效壓力(IMEP)、燃燒相位、空燃比(AFR)和汽缸內的壓力、溫度、質量及已燃燒產物之比例(bc)的變化等。在進行驗證中,先藉由實驗數據進行模型參數調校;接著和實驗結果比較驗證引擎燃燒模型;最後對加入歧管動態模型的完整均質進氣壓燃(HCCI)引擎模型進行不同進氣溫度穩態特性與改變噴油量及排氣節流閥暫態變化之驗證。模擬結果亦包括更細部的暫態變化表現,如狀態改變時循環間的引擎性能參數之變化等。此模型未來可應用於引擎控制器設計及硬體迴路(Hardware in the Loop)系統的模擬與測試等。


A dynamic homogeneous charge compression ignition (HCCI) engine model is developed in this study based on experimental data from a single-cylinder 500 c.c. engine manufactured by China Engine Corporation (CEC). The zero-dimensional dynamic engine model, which is developed using MALAB SIMULINK, is developed based on conservation of mass and energy and the ideal gas law. Subsystems in this model include valve lift profile, cylinder volume, mass flow rate, intake and exhaust runner dynamics, cylinder dynamics, combustion model and heat-transfer model. Inputs to the model include engine speed, intake temperature, fueling rate, intake throttle and exhaust throttle positions. Outputs to the model include indicate mean effective pressure (IMEP), combustion timings, air-to-fuel ratio (AFR), and the pressure, temperature, mass and burned gas fraction in the cylinder, intake and exhaust runners. Identification and validation of the combustion model are first conducted based on the cylinder pressure measurement and the combustion analysis results. With the inclusion of intake and exhaust runner dynamics and cylinder filling dynamics, the complete HCCI engine model is then validated against steady-state experimental data at various intake temperature and transient experimental data during step changes of fueling rate exhaust throttle position. Simulation results also include details such as mass flow rate through the intake and exhaust valves and cylinder charge conditions during the transient. In the future, this model can be used for control design and hardware in the loop (HIL) simulation and testing.

1 緒論 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 研究貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 實驗設備 8 2.1 實驗平台 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 實驗引擎 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 車輛 ECU 快速開發套件-MotoTron 系統 . . . . . . . . . . . . . . . . 12 2.4 進氣加熱裝置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 火星塞式汽缸壓力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 汽缸壓力計電荷放大器 . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 進排氣溫度計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 進排氣壓力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.9 曲軸角度編碼器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.10 燃油流量計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 引擎動力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.12 實驗軟體 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.12.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.12.2 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 模型組成 27 3.1 模型簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 汽缸體積方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 餘隙容積誤差及多變行程指數之估算 . . . . . . . . . . . . . . . . . . . 33 3.4 氣體流率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 燃燒模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.1 開始燃燒模型 . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.2 燃燒熱釋放模型 . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 引擎熱傳模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 進氣歧管動態行為 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.8 排氣歧管動態行為 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.9 汽缸動態行為 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.10 平均有效壓力計算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 模型驗證與模擬結果 42 4.1 燃燒模型與汽缸動態模型 . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.1 燃燒模型驗證 . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.2 汽缸動態模型調校與驗證 . . . . . . . . . . . . . . . . . . . . 46 4.2 完整 HCCI 引擎模型穩態驗證 . . . . . . . . . . . . . . . . . . . . . . 48 4.2.1 模型燃燒時間點比較 . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.2 引擎模型汽缸壓力比較 . . . . . . . . . . . . . . . . . . . . . . 52 4.2.3 引擎模型汽缸動態 . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.4 引擎模型IMEP . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 改變噴油量的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 改變排氣節流閥 (Exhaust Throttle) 的影響 . . . . . . . . . . . . . . 61 4.5 負閥門重疊的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 結論與未來展望 67 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 附錄 A (符號定義) 69 附錄 B (汽缸溫度推算公式) 73 參考文獻 73

[1] 呂學儒, 汽油均質進氣壓燃於增程發電引擎之實現, 國立台灣科技大學機械工程系, 碩士論文, 台北(2013).
[2] 經濟部能源局, “http://www.moeaboe.gov.tw/oil102/.”
[3] 羅華強, Matlab5.3simulink3.0範例入門. 全華科技圖書股份有限公司, 台北.
[4] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill,New York(1988).
[5] R. Ogink, “Computer modeling of HCCI combustion,” Ph.D. dissertation, Jun 2004.
[6] R. H. Thring, “Homogeneous charge compression ignition (HCCI) engines,” SAE,830246, 1989.
[7] P. Najt and D. Foster, “Compression-Ignition Homogeneous Charge Combustion,” SAE, 830264, 1983.
[8] J. Martinez-Frias, S. Aceves, D. Flowers, J. Simth, and R. Dibble, “HCCI engine control by thermal management,” SAE ,2000-01-2869, 2000.
[9] S. M. Donghoon Lee, Anna G. Stefanopoulou and M. J. c, “Modeling and control of a heated air intake homogeneous charge compression ignition (hcci) engine,” American Control Conference Marriott Waterfront, June 2010.
[10] N. J. Killingsworth, S. M. Aceves, D. L. Flowers, and M. Krstic, “A simple HCCI engine Model for Control,” IEEE International Conference on Control Applications, October 2006.
[11] H. Goran, T. Per, J. Bengt, J, and H. Jari, “HCCI Combustion Phasing in a Multi Cylinder Engine Using Variable Compression Ratio,” SAE ,2002-01-2858, 2002.
[12] S. Magnus and D. E, “Influence of egr quality and unmixedness on the high-load limits of hcci engines,” SAE, 2009.
[13] J. K. H. R. W. D. Jason S. Souder, Parag Mehresh, “A multi-cylinder hcci engine model for control,” ASME 2004 International Mechanical Engineering Congress and Exposition, November 13-19 2004.
[14] J. L. Yang, C. Todd, and J. Thomas, “Development of a Gasoline Engine System Using HCCI Technology-The Concept and the Result,” SAE ,2002-01-2832, 2002.
[15] A.-F. Mahrous, A. Potrzebowski, M. L. Wyszynski, H. M. Xu, A. Tsolakis, and P. Luszcz, “A Modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine,” Energy Conversion and Management 50(2009) 393-398, 2009.
[16] C. L. Genzale, S. C. Kong, and R. D. Reitz, “Modeling the Effects of Variable Intake Valve Timing on Diesel HCCI Combustion at Varying Load ,Speed, and Boost Pressure,” ASME Internal Combustion Engine Division (ICES2005), 2005.
[17] G. M. Shaver, J. C. Gerdes, and M. Roelle, “Physics-Based Closed-Loop Control of Phasing, Peak Pressure and Work Output in HCCI Engines Utilizing Variable Valve Actuation,” American Control Conference, June 30-July 2 2004.
[18] D. Law, D. Kemp, J. Allen, G. Kirkpatrick, and T. Copland, “Controlled combustion in an IC-engine with a fully variable valve train,” SAE ,2001-01-0251, 2001.
[19] Z. Shaohua, J. Guodong, L. W. Miroslaw, and X. Hongming, “Promotive Effect of Diesel Fuel on Gasoline HCCI Engine Operated with Negative Valve Overlap(NVO),” SAE ,2006-01-0633, 2006.
[20] D. J. Rausen, A. G. Stefanopoulou, J. M. Kang, J. A. Eng, and T. W. Kuo, “A mean-value model for control of homogeneous charge compression ignition(HCCI)engine,” American Control Conference, pp. 125–131, Jun 2004.
[21] C. J. Chiang and A. G. Stefanopoulou, “Sensitivity analysis of combustion timing and duration of homogeneous charge cmpression ignition (HCCI) engines,” in Proc. of the American Control Conf., 2006, pp. 1857–1862.
[22] L. J. K. M. P. Halstead and C. P. Quinn, “The auto-ignition of hydrocarbon fuels at high temperatures and pressures, fitting of a mathematical model,” Combustion and Flame, pp. 30:45–60, 1977.
[23] F. L. Dryer and I. Glassman, “Fundamental and semi-global kinetic mechanisms of hydrocarbon combustion,” Annual Report Oct.1,1977-Sept.1978, pp. DOE Contract NO. C00–4272–3, 1978.
[24] M. J. R. P. A. C. Gregory M. Shaver, J. Christian Gerdes and C. F. Edwards, “Dynamic modeling of residual-affected hcci engines with variable valve actuation,” ASME Journal of Dynamic Systems, Measurement and Control,vol.127,no.3, pp. 374–381, 2005.
[25] G. M. Shaver and J. C. Gerdes, “Cycle-to-cycle control of hcci engines,” ASME 2003 International Mechanical Engineering Congress and Exposition, pp. 403–412, 2003.
[26] P. T. Anders Widd and R. Johansson, “Physical modeling and control of homogeneous charge compression ignition (hcci) engines,” the 47th IEEE Conference on Decision and Control Cancun, pp. 5615–5620, 2008.
[27] Z. F. Junseok Chang, Orgun Guralp, P. N. Dennis Assanis Tang-Wei Kuo, and R. Rask, “New heat transfer correlation for an hcci engine derived from measurements of instantaneous surface heat flux,” SAE,2004-01-2996, 2004.
[28] N. J. Killingsworth, “Hcci engine control and optimization,” Ph.D. dissertation, University of California, San Diego, 2007.
[29] M. K. N. J. W. M. H. X. M. L. W. J. Q. a. M. J. R. Nan Jia, Jihong Wang, “Hcci engine modeling for real-time implementation and control development,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 6, December 2007.
[30] S. Z. G. G. Z. Yongsoon Yoon, Zongxuan Sun, “Development of control-oriented charge mixing model and experimental validation using graphical analysis,” 2013 American Control Conference (ACC) Washington, DC, USA, June 17-19 2013.
[31] J. C. Livengood and P. C. Wu, “Correlation of autoignition phenomena in internal combustion engines and rapid compression machines,” in Fifth International Symposium on Combustion, 1955, pp. 347–356.
[32] S. J. Chapman, MATLAB Programming for Engineers. 全華科技圖書股份有限公司, 台北.
[33] X. He, M. T. Domovan, B. T. Zigler, T. R. Plamer, S. M. Walton, M. S. Wooldridge, and A. Atreya, “An experimental and modeling study of isooctane ignition delay times under homogeneous charge compression ignition conditions,” Combustion and Flame, pp. 266–275, 2005.

QR CODE