簡易檢索 / 詳目顯示

研究生: 章家維
Chia-Wei Chang
論文名稱: 金屬玻璃鍍層鑽石切割刀提升晶圓切削能力與良率之改善
Beneficial Effects of Metallic Glass Coating on Dicing Property Improvements of Diamond Dicing Blades
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭俊良
Chun-Liang Kuo
姚栢文
Pak-Man Yiu
莊鑫毅
Hsin-Yi Chuang
朱閔聖
Min-Sheng Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 127
中文關鍵詞: 金屬玻璃晶圓切割鑽石切割刀低摩擦係數
外文關鍵詞: thin film metallic glass (TFMG), wafer dicing, diamond dicing blade, low coefficient of friction (CoF)
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是少數以金屬玻璃鍍層(Thin Film Metallic Glass, TFMG)的低摩擦係數(Low coefficient of friction, CoF)優良特性來提升鑽石切割刀在晶圓切割上的切削品質、單位面積使用率。在高真空環境中以高功率脈衝磁控濺鍍系統(HiPIMs)將厚度200 nm的金屬玻璃鍍層鍍覆於鑽石切割刀表面,鑽石切割刀選用三種常見的金屬結合劑(Metal bond)、樹脂結合劑(Resin bond)與電鑄(Electroformed)燒結之鑽石切割刀片,對半導體產業廣泛使用的矽(Silicon)、碳化矽(Silicon carbide)與玻璃(Borofloat33)晶圓基板做切割結果分析與優化程度的比較。
首先共使用六種不同成分的金屬玻璃鍍層包含鋯基(Zr-based)、鎢基(W-based)、鋁基(Al-based)、鉻基(Cr-based)、純鈦(Pure Ti)以及多層膜(multi-layer)的金屬玻璃鍍層鑽石切割刀對矽晶圓基板切割並與無鍍層(Bare)的鑽石切割刀比較結果;其次改變切削時的鑽石刀轉速(blade rotational speed)、進刀速率(feed rate),比較金屬玻璃鍍層鑽石刀優化程度的差異;以及使用金屬玻璃鍍層鑽石刀抑制特殊結構的矽基板切削時切割道蛇行、歪斜的程度;除了對矽晶圓,也同樣對碳化矽與玻璃基板做相似的切割比較。
在使用多種成分鍍層的測試上,鋯基金屬玻璃鍍層之鑽石切割刀對切割矽晶圓具有最佳的優化效果,與無鍍層鑽石刀片相比有54.5%的崩裂面積減少分率、偏差最小的切割道角度分布、最接近設定值的基板切割深度與切割道上最低的表面粗糙度。因此後續實驗以鋯基成分的鍍層鑽石刀進行,改變切割參數的結果顯示鍍層鑽石刀仍有優化切割的效果;抑制切割道蛇行的程度在低進刀速率時,鍍層鑽石刀能有效降低切割道的偏移量,但是當進刀速率提升後,鍍層鑽石刀的改善效果便不明顯;對碳化矽與玻璃基板切割時,鍍層鑽石刀仍然可以降低原本的崩裂程度,但是效果卻沒有如對矽切割來得顯著,原因是樹脂結合劑的鑽石刀自我再生(self-dressing)速度較快,在表面上的鍍層也較快被消耗完,優化的程度便不明顯。
整體來說以鋯基金屬玻璃鍍層鑽石刀能有良好的切割品質,其原因來自鍍層本身的低摩擦系數、疏水性佳與耐磨的特性。


In this study, the low coefficient of friction (CoF) of Thin Film Metallic Glass (TFMG) is used to improve the dicing quality and unit area utilization of diamond blades in the wafer dicing process. The thickness of 200 nm TFMG coating was deposited on the surface of diamond dicing blade by HiPIMs in a high vacuum chamber, the three common metal bond, resin bond, and electroformed sintered diamond dicing blades were used. The dicing results and the optimization of dicing on silicon, silicon carbide, and glass (Borofloat33) workpieces were investigated and analyzed.
The first experiment in this study, six different compositions including Zr-based, W-based, Al-based, Cr-based, Pure Ti, and multilayer TFMG coated diamond dicing blades were used to cut silicon wafers and compare them with the bare blade. Secondly, we change the blade rotational speed and feed rate during cutting to compare the difference in the optimization degree of the coated blade; and restrain the extent of wavy cutting appearance on the dicing street when dicing the silicon workpiece with special designed structure. Ultimately, the comparison of dicing silicon carbide and glass substrate was conducted with the same process.
In the experiment of multiple coatings, the zirconium-based TFMG blade had the best optimization effect on dicing silicon wafers, with a 54.5% reduction in chipping area, the least deviation in the angle distribution, the closest depth of kerf to the set value, and the lowest surface roughness on the dicing kerf compared to the bare blade. The results of adjusting the cutting parameters show that the coated blade still has the effect of optimizing the dicing performance; the restraint on wavy cutting can effectively reduce the deviation from the dicing kerf at a low feed rate, but when elevated the feed rate to 25 mm/sec, the improvement of the coated blade is not significant. For the dicing of silicon carbide and borofloat33, the coated blade can still have the reduction of chipping area from the bare blade. But the effect is not as significant as for dicing silicon, because the ability of self-dressing on resin bond dicing blade is faster, the coating on the surface worn out faster. Therefore, the optimization is not obvious in this case.
Overall, the promising dicing result of the Zr-TFMG-coated blade is due to the low friction coefficient, hydrophobicity, and wear resistance of the coating.

致謝 I 摘要 II Abstract III Contents IV List of Figures VII List of Tables XII Chapter 1. Introduction 1 1.1 Objective of study 2 Chapter 2. Literature Review 3 2.1 Diamond dicing blade 3 2.1.1 Specification of diamond dicing blade 3 2.1.2 Electroformed dicing blade 6 2.1.3 Metal sintered dicing blade 6 2.1.4 Resin bond dicing blade 6 2.2 Wafer dicing process 7 2.2.1 Mechanism of dicing 8 2.2.2 Process parameter 10 2.2.3 Workpiece materials for diamond dicing process 13 2.2.3.1 Workpiece: Silicon 13 2.2.3.2 Workpiece: Silicon carbide 14 2.2.3.3 Workpiece: Borofloat33 15 2.3 Chipping defects on the workpiece 16 2.4 Wavy cutting appearance 18 2.5 Thin film metallic glass (TFMGs) 18 2.5.1 Surface roughness 19 2.5.2 Coefficient of friction (CoF) 20 2.6 High power impulse magnetron sputtering (HiPIMS) 22 2.7 Application of TFMG on dicing improve dicing properties 23 Chapter 3. Experimental Procedures 24 3.1 Diamond dicing blade and workpiece preparations 24 3.1.1 Diamond dicing blade preparations 25 3.1.2 Workpiece materials: silicon, silicon carbide, borofloat33 26 3.2 Thin film deposition 27 3.3 Material characterizations of TFMGs 30 3.3.1 Crystallographic analysis 30 3.3.2 Microstructure analysis 31 3.4 Automatic dicing system 32 3.5 Chipping measurements 36 3.6 Comparison of kerf depth and angle 37 3.7 Surface roughness measurement 38 3.8 Wavy cutting measurement 39 Chapter 4. Experimental Results 41 4.1 Characterizations of TFMG systems 41 4.1.1 Crystallographic analysis 41 4.1.2 Contact angle measurement 42 4.2 TFMGs coating on diamond dicing blades 43 4.3 Dicing performance 47 4.3.1 Dicing performance on silicon workpiece 48 4.3.1.1 Result with different TFMG-coated blade 48 4.3.1.2 Comparison of chipping fraction 48 4.3.1.3 Comparison of kerf depth and angle 52 4.3.1.4 Surface morphology of kerfs, surface roughness 56 4.3.1.5 Results with different dicing parameters 59 4.3.1.6 Comparison of chipping area fraction 59 4.3.1.7 Surface morphology of kerfs, surface roughness 61 4.3.1.8 Performance in wavy cutting 63 4.3.1.9 Comparison of dicing quality between two diamond dicing blade vendors 68 4.3.2 Dicing performance on silicon carbide workpiece 70 4.3.2.1 Half-cut on silicon carbide 70 4.3.2.2 Comparison of chipping area fraction 70 4.3.2.3 Comparison of kerf depth and angle 74 4.3.2.4 Surface morphology of kerfs 78 4.3.2.5 Full-cut on silicon carbide 80 4.3.2.6 Comparison of topside chipping area fraction 80 4.3.2.7 Comparison of backside chipping area fraction 82 4.3.2.8 Morphology on sidewall 84 4.3.2.9 Comparison of surface roughness on sidewall 88 4.3.3 Dicing performance on borfloat33 workpiece 90 4.3.3.1 Comparison of chipping area fraction 90 4.3.3.2 Comparison of kerf depth 91 4.3.3.3 Surface morphology of kerfs 91 Chapter 5. Discussion 92 5.1 Dicing on silicon wafer 94 5.2 Dicing on silicon carbide wafer 95 5.3 Dicing on borofloat33 wafer 96 Chapter 6. Conclusions and future works 97 6.1 Conclusions 97 6.2 Future works 98 References 99 Appendix 103

1. Esashi, M., Wafer level packaging of MEMS. Journal of Micromechanics and Microengineering, 2008. 18(7).
2. Lange, P., et al., Dicing of fragile MEMS structures. MRS Proceedings, 2011. 1139.
3. Baranski, M., et al., Wafer-level fabrication of microcube-typed beam-splitters by saw-dicing of glass substrate. IEEE Photonics Technology Letters, 2014. 26(1): p. 100-103.
4. 賴柏彰, 金屬玻璃鍍層提升鑽石刀片切削性質之研究. 2019.
5. Chu, J.P., et al., Metallic glass coating for improving diamond dicing performance. Sci Rep, 2020. 10(1): p. 12432.
6. Chu, J.P., et al., Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Sci Rep, 2016. 6: p. 31847.
7. Chu, J.P., et al., Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface and Coatings Technology, 2011. 205(16): p. 4030-4034.
8. DISCO, Wafer dicing by diamond blade - dicing-grinding service.
9. Corporation., H.H.-T., 2. Semiconductor - metrology and inspection, Hitachi High-Tech GLOBAL. 2021.
10. Tools, U.I.S., Selecting right diamond dicing blade for your application.
11. Abdullah, S., et al., Step cut for dicing laminated wafer in a QFN package. Solid State Science and Technology, 2008. 16: p. 198-206.
12. Yuan, Z., et al., Investigation on the fabrication of dicing blades with different sintering methods for machining hard-brittle material wafers. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018. 233(7): p. 1781-1793.
13. Lee, S.B., et al., Development of a dicing blade with photopolymerizable resins for improving machinability. CIRP Annals, 2005. 54(1): p. 293-296.
14. Corporation., D., B1A _ dicing blades _ product information _ DISCO Corporation. 2020.
15. Guo, Y., et al., Sapphire substrate sidewall shaping of deep ultraviolet light-emitting diodes by picosecond laser multiple scribing. Applied Physics Express, 2017. 10(6).
16. Marks, M.R., Z. Hassan, and K.Y. Cheong, Ultrathin wafer pre-assembly and assembly process technologies: a review. Critical Reviews in Solid State and Materials Sciences, 2015. 40(5): p. 251-290.
17. UKAM Industrial superhard tools, Division of LEL Diamond Tools International, I., Diamond Blade Guide, Understand Diamond Blades - SMART CUT.
18. Von Witzendorff, P., et al., Dicing of hard and brittle materials with on-machine laser-dressed metal-bonded diamond blades. Precision Engineering, 2014. 38(1): p. 162-167.
19. Zhang, Z., et al., Material removal mechanism of precision grinding of soft-brittle CdZnTe wafers. The International Journal of Advanced Manufacturing Technology, 2009. 46(5-8): p. 563-569.
20. U, E., Optimizing the wafer dicing process. Proceedings of Int Electronics Manuf Technol Symp, 1993.
21. Z09 SERIES electroformed bond blades. https://www.disco.co.jp/eg/products/blade/z09.html.
22. Hwaiyu Geng, C., PE, Semiconductor manufacturing handbook, Second Edition-singulation-technology-overview-and-blade-dicing. 2005.
23. Zhou, H., et al., High-speed dicing of silicon wafers conducted using ultrathin blades. The International Journal of Advanced Manufacturing Technology, 2012. 66(5-8): p. 947-953.
24. Jiun, H.H., et al., Effect of laminated wafer toward dicing process and alternative double pass sawing method to reduce chipping. IEEE Transactions on Electronics Packaging Manufacturing, 2006. 29(1): p. 17-24.
25. B1A SERIES metal bond blades. https://www.disco.co.jp/eg/products/blade/b1a.html.
26. R07 SERIES Resin Bond Blades.
27. Venkatakrishnan, K., N. Sudani, and B. Tan, A high-repetition-rate femtosecond laser for thin silicon wafer dicing. Journal of Micromechanics and Microengineering, 2008. 18(7).
28. Kumagai, M., et al., Advanced dicing technology for semiconductor wafer—stealth dicing. IEEE Transactions on Semiconductor Manufacturing, 2007. 20(3): p. 259-265.
29. Tang, G., et al., Fabrication and analysis of high-performance piezoelectric MEMS generators. Journal of Micromechanics and Microengineering, 2012. 22(6).
30. Daniel Lu, C.P.W., Materials for advanced packaging. 2009.
31. F.K.CHIN, C.E.T., Saw chipping improvement to achieve defect free bare die products. 2014(36th International Electronic Manufacturing Technology Conference).
32. Ono, T., U.S. patent 4,688,540. 1987.
33. Wang, Z., et al., 300-mm Low-k wafer dicing saw development. IEEE Transactions on Electronics Packaging Manufacturing, 2007. 30(4): p. 313-319.
34. Lei, W.-S., A. Kumar, and R. Yalamanchili, Die singulation technologies for advanced packaging: A critical review. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012. 30(4).
35. Kim, S.-C., et al., Machining characteristics on the ultra-precision dicing of silicon wafer. The International Journal of Advanced Manufacturing Technology, 2006. 33(7-8): p. 662-667.
36. Toshiharu MIWA, I.I., Isao YUKAWA, Blade wear and wafer chipping in dicing processes. Transactions of the Japan Society of Mechanical Engineers Series C, 1997.
37. Luo, S.Y. and Z.W. Wang, Studies of chipping mechanisms for dicing silicon wafers. The International Journal of Advanced Manufacturing Technology, 2006. 35(11-12): p. 1206-1218.
38. Li, K., et al., High strain rate of quartz glass and its effects during high-speed dicing. Ceramics International, 2019. 45(10): p. 13523-13529.
39. Tan, J., et al., Crystallographic cracking behavior in silicon single crystal wafer. Materials Science and Engineering: B, 2003. 103(1): p. 49-56.
40. Cvetković, S., C. Morsbach, and L. Rissing, Ultra-precision dicing and wire sawing of silicon carbide (SiC). Microelectronic Engineering, 2011. 88(8): p. 2500-2504.
41. Sales Egnineering dept., D.C., TR16-05, dicing technologies for SiC. 2016 (DISCO Technical Review Mar. 2016 ).
42. Ayalew, T., SiC semiconductor devices technology, Modeling, and Simulation 2.1.1 Crystallography of SiC. 2004.
43. TECDIA, Singulating hard wafer material_ SiC
44. Fujita, T., Y. Izumi, and J. Watanabe, Ultrafine ductile-mode dicing technology for SiC substrate with metal film using PCD blade. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2019. 13(4): p. JAMDSM0073-JAMDSM0073.
45. Stompe M, C.S., Rissing L., Blade wear and sidewall quality by dicing of sintered silicon carbide (SSiC). 2011(11th Euspen International Conf. 2011).
46. Tseng, A.A., et al., Recent developments on microablation of glass materials using excimer lasers. Optics and Lasers in Engineering, 2007. 45(10): p. 975-992.
47. Savriama, G., et al., Crack-free laser dicing of glass in the microelectronics industry. Journal of Laser Applications, 2013. 25(5).
48. Amri MS, L.D., Harun F. Chipping free process for combination of narrow saw street (60um) and thick wafer (600um) sawing process. in IEEE/CPMT 34th international electronic manufacturing technology symposium (IEMT). 2010. Melaka, Malaysia: IEEE, New York, USA.
49. Lee, J.K.S.L.a.S.W.R., Development of novel dicing process by anisotropic wet etching with convex corner compensation. 2008(10th Electronics Packaging Technology Conference).
50. Shen, J., et al., Investigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon. Micromachines (Basel), 2019. 10(9).
51. Fuegl M, M.G., Meissnerb E, Freyb L. Assessment of dicing induced damage and residual stress on the mechanical and electrical behavior of chips. in IEEE 65th electronic components & technology conference (ECTC). 2015. San Diego, USA: IEEE, New York, USA.
52. Liu H, W.Y., Wang J, Xu S. Investigation of single cut process in mechanical dicing for thick metal wafer. in IEEE 17th international conference on electronic packaging technology (ICEPT). 2016. Wuhan, China: IEEE, New York, USA.
53. YH Chiew, J.L., FF Tan, Mechanical dicing challenges and development on 50um saw street with wafer backside coating. 2018(2018 IEEE 38th International Electronics Manufacturing Technology Conference (IEMT)).
54. Co., D. Prevents slant and wavy cutting due to increased blade rigidity. 2020; Available from: https://www.disco.co.jp/eg/products/blade/zhrf.html.
55. Chu, J.P., et al., Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012. 520(16): p. 5097-5122.
56. Du, X., et al., Designing ductile Zr-Based bulk metallic glasses with phase separated microstructure. Advanced Engineering Materials, 2009. 11(5): p. 387-391.
57. Chang, C.H., et al., Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass. Thin Solid Films, 2016. 616: p. 431-436.
58. D.Sangid, M., The physics of fatigue crack initiation. International Journal of Fatigue, 2012. 57: p. 58-72.
59. Schuh, C., T. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Materialia, 2007. 55(12): p. 4067-4109.
60. Chu, J.P., et al., Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber. Thin Solid Films, 2019. 688.
61. Magnetron sputtering: overview.
62. Gudmundsson, J.T., et al., High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012. 30(3).
63. 張家豪, 金屬玻璃鍍層用於提升鎂合金疲勞性質, 降低高速鋼鑽頭鑽孔溫度及降低風阻研究. 2019.

無法下載圖示 全文公開日期 2026/08/25 (校內網路)
全文公開日期 2026/08/25 (校外網路)
全文公開日期 2026/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE