簡易檢索 / 詳目顯示

研究生: 林昇漢
Sheng--Han Lin
論文名稱: 金屬玻璃薄膜之機械性質分析及應用於碳化矽之切割實驗
Thin-film metallic glasses: mechanical properties analysis and application for dicing silicon carbide
指導教授: 朱瑾
Jinn Chu
口試委員: 朱閔聖
Min-Sheng Chu
陳炤彰
Zhao-Zhang Chen
姚柏文
Pak-Man Yiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 139
中文關鍵詞: 金屬玻璃鍍層鑽石切割刀低摩擦係數碳化矽晶圓切割
外文關鍵詞: Thin-Film metallic glass (TFMG), diamond dicing blades, Low CoF, SiC, wafer dicing
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽(SiC)作為第三代半導體,由於其低功耗,高功率的特性和適合高壓,大電流的操作環境,使其成為電動車充電和5G基地台的基礎設備。但由於碳化矽材質偏硬脆,使得切割和研磨的難度大幅提升。在封裝後段製程中如何減少在切割分離晶圓時的崩裂面積並提高生產裸晶之良率,乃是現在必須迫切解決的問題。
    非晶之金屬玻璃薄膜(Thin film metallic glass, TFMG)具有低摩擦係數(Low coefficient of friction, CoF)、高機械強度、平整表面和高耐磨性等特徵。本研究將使用高功率脈衝磁控濺鍍(HiPIMS) 鍍覆金屬玻璃鍍層在市售之鑽石切割刀上來提高鍍層附著力。本研究將選用七種不同之金屬玻璃鍍層,各別為鋯基(Zr-based)、鈦基(Ti-based)、鉬基(Mo-based)、鎢基(W-based)、鋁基(Al-based)、鉻基(Cr-based)和銅基(Cu-based),並在金屬玻璃鍍層和基材之間加上一純鈦(Pure Ti)緩衝層。鑽石刀的選擇將使用三種不同結合劑之刀片,分別為樹酯結合劑(Resin-bonding)、金屬結合劑(Metal-bonding)和電鑄(Electroformed)燒結的鑽石切割刀片,並選用表現較好的鍍層進行切割參數之調整,以進行碳化矽切割之優化。
    在切割實驗之前,會先針對各鍍層進行機械性質的量測,其中以鎢基的表現最好,硬度高達15.1 GPa,且加上緩衝層後附著力可達152.7mN/μm,CoF約為0.15。在比較多種成分鍍層在樹酯鑽石切割刀的切割表現上,也以鎢基跟鉬基的和純鈦緩衝層組合具有最佳的切割效果,與無鍍層刀子相比,兩者皆有接近70%的崩裂面積減少分率、較平滑的切割表面(Ra約1.6 μm)和較準確的切割深度。後續實驗也將此兩種鍍層鍍覆在金屬鍵結和電鑄鑽石切割刀片做比較,金屬鍵結鑽石刀雖有較低的崩裂面積減少分率,但其切割表面與無鍍層刀子相比卻較為粗糙(Ra約3.4 μm)。電鑄燒結鑽石刀有著相對低的崩裂面積減少分率,同時也有更精確的切割深度和非常平滑的切割表面(Ra約0.2 μm)。在後續改變切割參數的實驗中,可發現有鍍層鑽石刀即使在高進刀速率(10 mm/s)的條件下依然能維持切割道的完整度;反之無鍍層鑽石刀在10 mm/s的進刀速率下切割道已經崩塌。
    最後在嘗試提升薄膜性質提升的實驗中,選用了在切割實驗中表現優異的鎢基金屬玻璃做改良。於HiPIMS鍍膜參數中以追求高離子通量為目標,提升了鍍膜功率及脈衝頻率和降低脈衝時間。最後分析結果發現當功率提升至3.5 kW時,鎢基金屬玻璃之硬度有達17.02 GPa,摩擦係數只有些微提升,約0.16。但同時也發現粗糙度會隨著鍍膜功率增強而變粗糙。
    總結來說,以碳化矽晶圓做切割對象,金屬玻璃鍍層鍍覆在鑽石切割刀上確實能有效降低切割道崩裂面積,但本研究所探討的金屬玻璃鍍層在切割上只有些微的切割性能提升,建議可以開發具有更高硬度和更高耐磨性之非晶金屬玻璃成分,並也應用在切割晶圓上。


    Single crystallized silicon carbide (SiC) is suitable for high-voltage, high-current operating environments and has become the primary material for electric vehicle charging and 5G base stations. Hard and brittle characteristics of SiC had greatly increased the difficulty of dicing and grinding. It is urgently needed to reduce cracking in the back-end packaging process and improve yield of bare wafers.
    Thin film metallic glass (TFMG) has the characteristics of low coefficient of friction, high mechanical strength, and high wear resistance. High-power pulsed magnetron sputtering (HiPIMS) will be used to deposit TFMG on diamond dicing blades. We will choose seven types of metallic glass coatings for this study, including Zr-based , Ti-based, Mo-based, W-based, Al-based, Cr-based and Cu-based, all of which are coated with pure Ti buffer layer. Three kinds of different binding blades will be used, which are resin-bonding, metal-bonding and electroformed sintered diamond blades.
    Before the cutting experiment, the mechanical properties of each coating will be measured, among which tungsten-based is the best, with a hardness around 15.1 GPa. After adding a buffer layer, the adhesion can reach 152.7mN/μm, and the CoF is about 0.15. Comparing with the dicing performance of various coatings on resin diamond blades, the combination of W-based and Mo-based with pure titanium buffer layers has the best performance. Compared with uncoated knives, both of them have nearly 70 % reduction in chipping area, smoother cutting surface (Ra about 1.6 μm) and more accurate cutting depth. We also compared the metal-bonded and electroformed diamond blades with these two coatings. Metal bonded diamond blade has a lower fraction of the fractured area, but with a rougher kerf morphology. Electroformed sintered diamond blades have a relatively low chipping area fraction, more accurate cutting depth and smooth cutting surface. While changing the dicing parameters, it can be found that the coated diamond blade can maintain the integrity of the kerf even at a high feed rate (10 mm/s); The cutting path has collapsed at that feed rate.
    In the experiment of improving the thin film's properties, W-based TFMG had been chosen. In the HiPIMS coating parameters, high ion flux is the goal, and the deposition power and the pulse frequency are increased, and the pulse time is reduced. The hardness results show that when the power is increased to 3.5kW, the hardness of the W-based metallic glass reaches 17.02 GPa, and the CoF is only slightly increased, about 0.16.
    It has been shown that metallic glass coatings on diamond dicing blades effectively reduce chipping areas on SiC wafers. It is suggested that new metallic glass compositions can be developed with higher wear resistance and hardness.

    致謝 I 摘要 II Abstract III Outlines IV Figures of list VII Tables of list XI Chapter 1. Introduction 1 1.1 Objective of experiment 2 Chapter 2. Literature Review 3 2.1 Introduction of the diamond dicing blade 3 2.1.1 Manufacturing of diamond dicing blade 3 2.1.2 Resin bond blades 7 2.1.3 Metal sintered blades 7 2.1.4 Electroformed blades 7 2.1.5 Dressing process of the diamond blade 8 2.2 Wafer dicing process in semiconductor 9 2.2.1 Wafer dicing mechanism 10 2.2.2 Wafer dicing parameter 11 2.2.2.1 The influence of RPM (rotation speed per minute) 12 2.2.2.2 The influence of feed rate 12 2.2.2.3 The influence of cutting depth 13 2.2.2.4 The influence kerf index 13 2.3 Chipping mechanism 14 2.4 The introduction of Silicon carbide workpiece 15 2.4.1 Other hard materials for optoelectronics and semiconductor applications 17 2.4.2 The study of dicing silicon carbide 19 2.4.3 Various methods of dicing silicon carbides 20 2.5 Thin film metallic glass (TFMG) 22 2.5.1 Surface roughness of TFMGs 25 2.5.2 Coefficient of friction (CoF) 26 2.5.3 Hydrophobicity 28 2.6 Adhesive layer (Buffer layer) 29 2.7 High power impulse magnetron sputtering (HiPIMS) 30 2.7.1 Improving thin film qualities by adjusting HiPIMS parameters 32 2.8 Application of TFMG on dicing quality improvement 34 2.8.1 Similar works of TFMG coatings for SiC dicing qualities improved 36 Chapter 3. Experimental procedure 37 3.1 Diamond blade dicing and workpiece parameters 39 3.1.1 Diamond blades and work materials selections 39 3.2 Thin film deposition 40 3.3 Material characterizations of TFMGs 44 3.3.1 Crystallographic analysis (XRD) 44 3.3.2 Hydrophobicity analysis (water contact angle measurement) 45 3.3.3 Atomic force microscopy (AFM analysis) 46 3.3.4 Nano-indenter 47 3.3.4.1 Nano-indention test 47 3.3.4.2 Scratch testing 48 3.3.4.3 Wear testing 49 3.4 Microstructure analysis 50 3.4.1 Scanning Electron Microscope (SEM) & Laser confocal Microscope 50 3.5 Automatic dicing machine 51 3.6 Chipping measurement 55 3.7 Kerf angle and kerf depth measurements 56 3.8 Roughness measurements 57 Chapter 4. Results and discussions 58 4.1 Characteristics of TFMGs 58 4.1.1 Crystallographic analysis 58 4.1.2 Hydrophobicity analysis 59 4.1.3 Hardness and modulus analysis 61 4.1.4 Coefficient of friction results 63 4.1.5 Ramp scratch test 64 4.1.6 Surface roughness analysis (AFM) 67 4.1.7 Wear test 69 4.2 Coatings on diamond dicing blades 71 4.3 Dicing performance with different TFMG coated blades 75 4.3.1 Dicing performances with resin blades 76 4.3.1.1 Comparison of chipping area fraction 76 4.3.1.2 Comparison of kerf depth and roughness 80 4.3.1.3 Dicing results of Resin blades 84 4.3.2 Dicing performances with metal bonded and electroformed blades 85 4.3.2.1 Chipping area fraction and kerf angle results of metal bonded blades 85 4.3.2.2 Kerf depth and roughness of metal bonded blades 87 4.3.2.3 Chipping area fraction results of electroformed blades 89 4.3.2.4 Kerf depth and roughness results of electroformed blades 92 4.3.2.5 Dicing results of metal bonded blades and electroformed blades 95 4.3.2.6 Comparison of spindle current for different blades and TFMGs 96 4.4 Dicing performances with different dicing parameters 99 4.5 Increased thin film qualities by adjusting HiPIMS parameters 102 4.5.1 Thin film qualities with different deposition parameters 102 4.5.1.1 Nano-indentation 102 4.5.1.2 AFM results 103 4.5.2 Dicing performances with different deposition parameters 105 4.5.3 Comparison of dicing quality with similar work 106 Chapter 5. Conclusions and suggestions for future works 107 5.1 Conclusions 107 5.2 Future works 109 References 110

    1. Shi, J., et al., Optimization method of cutting parameters of wafer dicing saw based on orthogonal regression design. SN Applied Sciences, 2022. 4(10): p. 1-11.
    2. MARIDEL LARES, H.C. Laser Dicing Technique Cuts Wafers from the Inside Out. 2008.
    3. 章家維, 金屬玻璃鍍層鑽石切割刀提升晶圓切削能力與良率之改善. 2020.
    4. Chu, J.P., et al., Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Scientific reports, 2016. 6(1): p. 1-7.
    5. Systems, S. Silicon Wafer Dicing Services. 2023.
    6. Tools, U.I.S. SELECTING RIGHT DIAMOND DICING BLADE FOR YOUR APPLICATION. 2009.
    7. 賴柏彰, 金屬玻璃鍍層提升鑽石刀片切削性質之研究. 2019.
    8. Norton. Understanding Diamond Blades. 2017.
    9. Feng, Y., et al., High-Speed Dicing of SiC Wafers with 0.048 mm Diamond Blades via Rolling-Slitting. Materials, 2022. 15(22): p. 8083.
    10. Yuan, Z., et al., Investigation on the fabrication of dicing blades with different sintering methods for machining hard-brittle material wafers. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019. 233(7): p. 1781-1793.
    11. Corporation, D. ZH05 series product information. 2023.
    12. Kinik. Ultra precision. 2023.
    13. Zhou, H., et al., High-speed dicing of silicon wafers conducted using ultrathin blades. The International Journal of Advanced Manufacturing Technology, 2013. 66(5): p. 947-953.
    14. DISCO. B1A SERIES Metal bonding blade. 2023.
    15. DISCO. NBC-ZH SERIES electroformed blade. 2023.
    16. DISCO. P1A SERIES resin bonded blade. 2023.
    17. corporation, D. P1A SERIES.
    18. tools, U.i.s. Metal Bond(sintered)-Diamond/CBN dicing blade.
    19. Baranski, M., et al., Wafer-level fabrication of microcube-typed beam-splitters by saw-dicing of glass substrate. IEEE Photonics Technology Letters, 2013. 26(1): p. 100-103.
    20. Efrat, U. Optimizing the wafer dicing process. in Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium. 1993. IEEE.
    21. Advanced dicing technology, G.L., Senior Dicing Blade R&D Specialist. Introduction to Dressing.
    22. Shi, K.W., K. Yow, and R. Khoo. Developments of blade dressing technique using SiC board for C90 low-k wafer sawing. in 2011 IEEE 13th Electronics Packaging Technology Conference. 2011. IEEE.
    23. SOLUTIONS, O.S. What is Dicing Process? 2022.
    24. Kumagai, M., et al., Advanced dicing technology for semiconductor wafer—stealth dicing. IEEE Transactions on Semiconductor Manufacturing, 2007. 20(3): p. 259-265.
    25. Niziev, V. and A. Nesterov, Influence of beam polarization on laser cutting efficiency. Journal of Physics D: Applied Physics, 1999. 32(13): p. 1455.
    26. systems, S. Silicon Wafer Dicing Services.
    27. Lin, J.-W. and M.-H. Cheng, Investigation of chipping and wear of silicon wafer dicing. Journal of Manufacturing Processes, 2014. 16(3): p. 373-378.
    28. Disco. Dicing and blades overview.
    29. Marks, M.R., Z. Hassan, and K.Y. Cheong, Ultrathin wafer pre-assembly and assembly process technologies: A review. Critical Reviews in Solid State and Materials Sciences, 2015. 40(5): p. 251-290.
    30. Soffa, K. New Generation Hub Blades for Silicon Wafer Dicing.
    31. Lei, W.-S., A. Kumar, and R. Yalamanchili, Die singulation technologies for advanced packaging: A critical review. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012. 30(4): p. 040801.
    32. Wang, X., et al., Study on precision dicing process of SiC wafer with diamond dicing blades. Nanotechnology and Precision Engineering, 2021. 4(3): p. 033004.
    33. Su, T.-J., et al., Optimizing the dicing saw parameters of 60 μm wafer dicing street. Microsystem Technologies, 2018. 24(10): p. 3965-3971.
    34. Shen, J., et al., Investigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon. Micromachines, 2019. 10(9): p. 616.
    35. Cvetković, S., C. Morsbach, and L. Rissing, Ultra-precision dicing and wire sawing of silicon carbide (SiC). Microelectronic Engineering, 2011. 88(8): p. 2500-2504.
    36. Mukasyan, A.S., Concise Encyclopedia of Self-Propagating High-Temperature Synthesis. 2017.
    37. Cheung, R., Silicon Carbide Microelectromechanical Systems for Harsh Environments. 2006.
    38. La Via, F., M. Camarda, and A. La Magna, Mechanisms of growth and defect properties of epitaxial SiC. Applied Physics Reviews, 2014. 1(3): p. 031301.
    39. Casady, J., et al., 4H-SiC power devices for use in power electronic motor control. Solid-State Electronics, 1998. 42(12): p. 2165-2176.
    40. Jeffrey Fedison, P.D., Benefits of Applying Silicon Carbide Power Devices. 2019.
    41. Zhang, Y. The application of third generation semiconductor in power industry. in E3S Web of Conferences. 2020. EDP Sciences.
    42. YOLE-Group. GaAs substrate manufacturer Vital Materials targets next generation optoelectronics and RF applications – An interview with Vital Materials. 2020.
    43. TECDIA. Singulating hard wafer material_SiC.
    44. Belgardt, C., et al. Fast high yield cutting of 4 and 6 inch SiC-wafer using thermal laser separation (TLS). in Lasers in Manufacturing Conference. 2017.
    45. Lewke, D., et al. Thermal Laser Separation–A Novel Dicing Technology Fulfilling the Demands of Volume Manufacturing of 4H-SiC Devices. in Materials Science Forum. 2015. Trans Tech Publ.
    46. Fujita, T., Y. Izumi, and J. Watanabe, Ultrafine ductile-mode dicing technology for SiC substrate with metal film using PCD blade. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2019. 13(4): p. JAMDSM0073-JAMDSM0073.
    47. Li, M., et al., Ultrathin diamond blades for dicing single crystal SiC developed using a novel bonding method. Journal of Manufacturing Processes, 2022. 84: p. 88-99.
    48. Zhang, Z., et al., Dual laser beam asynchronous dicing of 4H-sic wafer. Micromachines, 2021. 12(11): p. 1331.
    49. Klement, W., R. Willens, and P. Duwez, Non-crystalline structure in solidified gold–silicon alloys. Nature, 1960. 187(4740): p. 869-870.
    50. Jeong, U., et al., Evaluation of mechanical properties of Zr–Cu–Al–Ni TFMG using nanoindentation. Journal of Materials Research and Technology, 2021. 12: p. 2368-2382.
    51. Lai, J., et al., Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications. Applied Surface Science, 2018. 427: p. 485-495.
    52. Lee, J., H.-C. Tung, and J.-G. Duh, Enhancement of mechanical and thermal properties in Zr–Cu–Ni–Al–N thin film metallic glass by compositional control of nitrogen. Materials Letters, 2015. 159: p. 369-372.
    53. Abboud, M., et al., Nanoscratch behavior of metallic glass/crystalline nanolayered composites. JOM, 2019. 71(2): p. 593-601.
    54. Chang, C., et al., Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass. Thin Solid Films, 2016. 616: p. 431-436.
    55. Jia, H., et al., Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films, 2014. 561: p. 2-27.
    56. Fu, B.-Y., et al., Roughness effects of crack surfaces on the elastic moduli of cracked rocks. Frontiers in Earth Science, 2021. 9: p. 626903.
    57. Field, I., et al., The relationship between surface roughness and fatigue crack growth rate in AA7050-T7451 subjected to periodic underloads. International Journal of Fatigue, 2023. 167: p. 107355.
    58. Chu, J.P., et al., Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber. Thin Solid Films, 2019. 688: p. 137320.
    59. Givi, M.K.B., Tribological aspects in friction stir welding and processing. 2014.
    60. Laurén, S. Why is contact angle important? 2018.
    61. Tang, J.-F., et al., Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. Materials, 2022. 15(7): p. 2461.
    62. Moreno-Barcenas, A., et al., Diamond-like carbon coatings on plasma nitrided M2 steel: effect of deposition parameters on adhesion properties. arXiv preprint arXiv:1810.05748, 2018.
    63. Mingge, W., et al., Effects of metal buffer layer for amorphous carbon film of 304 stainless steel bipolar plate. Thin Solid Films, 2016. 616: p. 507-514.
    64. Magnetron sputtering: overview.
    65. Lundin, D., et al., Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering. Plasma Sources Science and Technology, 2009. 18(4): p. 045008.
    66. Bönninghoff, N., Thin Film Metallic Glass Deposited by High Power Impulse Magnetron Sputtering and its Low Friction Behavior. 2021.
    67. Bönninghoff, N., et al., ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering. Surface and Coatings Technology, 2021. 412: p. 127029.
    68. Samuelsson, M., et al., Influence of ionization degree on film properties when using high power impulse magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012. 30(3): p. 031507.
    69. Viloan, R.P.B., et al., Tuning the stress in TiN films by regulating the doubly charged ion fraction in a reactive HiPIMS discharge. Journal of Applied Physics, 2020. 127(10): p. 103302.
    70. Shimizu, T., et al., Experimental verification of deposition rate increase, with maintained high ionized flux fraction, by shortening the HiPIMS pulse. Plasma Sources Science and Technology, 2021. 30(4): p. 045006.
    71. Chu, J.P., et al., Metallic glass coating for improving diamond dicing performance. Scientific Reports, 2020. 10(1): p. 12432.
    72. 孫翊峰, 金屬玻璃鍍層應用於鑽石切割刀: 切削性質與鍍層附著力提升研究. 2022.
    73. Bruker. Wear Testing - Quantitative Nanoscale Wear Resistance.
    74. Chang, C., et al., Al–Ni–Y–X (X= Cu, Ta, Zr) metallic glass composite thin films for broad-band uniform reflectivity. Thin Solid Films, 2014. 571: p. 194-197.
    75. Li, H., et al., Long-term tribocorrosion resistance and failure tolerance of multilayer carbon-based coatings. Friction, 2022. 10(10): p. 1707-1721.
    76. Yiu, P., et al., Thin film metallic glasses: Properties, applications and future. Journal of applied physics, 2020. 127(3): p. 030901.
    77. Bull, S. and E. Berasetegui, An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International, 2006. 39(2): p. 99-114.
    78. Randall, N., G. Favaro, and C. Frankel, The effect of intrinsic parameters on the critical load as measured with the scratch test method. Surface and Coatings Technology, 2001. 137(2-3): p. 146-151.
    79. Lv, Y., et al., Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering. Applied Surface Science, 2012. 258(8): p. 3864-3870.
    80. Sarker, S., et al., Discovering exceptionally hard and wear-resistant metallic glasses by combining machine-learning with high throughput experimentation. Applied Physics Reviews, 2022. 9(1): p. 011403.

    無法下載圖示 全文公開日期 2028/07/11 (校內網路)
    全文公開日期 2028/07/11 (校外網路)
    全文公開日期 2028/07/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE