簡易檢索 / 詳目顯示

研究生: 陳琮叡
Tsung-Ruei Chen
論文名稱: 理論計算於乙炔在矽(100)表面碳化機制之研究
Theoretical Study on Surface Carbonization of Si (100) Surface Using Acetylene
指導教授: 洪儒生
Lu- Sheng Hong
江志強
Jyh-Chiang Jiang
口試委員: 郭哲來
Jer-Lai Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 寬能隙材料碳化矽緩衝層乙炔密度泛函理論微觀反應動力學
外文關鍵詞: Wide band gap materials, Silicon carbide, Buffer layer, Acetylene, DFT, Microkinetic
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽是一個具有良好物理、機械和電子特性的寬能隙材料,使其成為下一個世代中高功率元件的替代材料。在過去大家對於矽基板上磊晶成長碳化矽有很大的興趣,因為其具有低成本以及大面積的優勢,另一方面將矽表面進行碳化能夠有效地解決晶格不匹配的問題並減少晶體缺陷。然而在過去的研究大多使用丙烷對矽表面進行高溫(~1673K)碳化,這導致矽會從矽基板中大量昇華。因此,了解低溫下的碳化機制並改善磊晶層品質非常重要。在過去有些研究指出未飽和碳氫分子因為存在π電子的關係使其比飽和碳氫分子在矽表面具有更高的活性。 在這項研究中,我們結合密度泛函理論以及微觀反應動力學模擬來探討乙炔在矽(100)表面之碳化機制,計算結果顯示end-bridge及di-σ是乙炔在矽表面上的最穩定吸附結構,除此之外,更基於這兩種最穩定的結構探討乙炔在後續的裂解機制。我們發現從end-bridge的結構中存在兩條路徑能在矽表面裂解成carbon dimer,其中乙炔遷移到hollow site後再更進一步脫氫反應是反應能量最小的路徑,而速率決定步驟則是在於第一個氫原子的移除。在di-σ的結構中,我們也發現有兩條路徑能在表面形成carbon dimer,第一條路徑是乙炔直接進行逐步脫氫反應,而另一條則是乙炔經由旋轉後再依序脫氫反應,然而由於他們在表面形成的carbon dimer結構不同,因此在矽表面上他們是互相競爭的反應。
    我們的微觀反應動力學結果顯示carbon dimer可以在低溫下以end-bridge的結構生成,並且在660K的溫度產生最大量的carbon dimer。然而在這溫度之後,我們也觀察到從di-σ吸附結構生成的carbon dimer,而這結構將導致多晶碳化矽的產生。隨後由於C-H 裂解以及乙炔旋轉至hollow site形成end-bridge結構之間的競爭反應,促使end-bridge carbon dimer (end-C2H2*)的覆蓋率逐漸下降。我們的結果證實利用乙炔進行矽表面碳化時,在溫度的控制上需要非常小心,除此之外,在660K的溫度附近能生成最多的單晶碳化矽緩衝層。


    Silicon carbide (SiC) is a wide gap semiconductor that exhibits promising physical, mechanical, and electronic properties, making it an alternative material for next-generation high-power electronic devices. Previously, the epitaxial growth of SiC on Si substrates has shown a significant interest because of low cost and large surface area. Especially, Si-surface carbonization is an effective method in solving the crystal defect and mismatch problem. Hence, it is important to explore the carbonization mechanism at low temperature in improving the epitaxial film quality. It is reported that unsaturated hydrocarbons have higher reactivity on Si surfaces than saturated hydrocarbons due to the presence of π electrons. Thus, in this study, we explored the carbonization mechanisms of Si(100) surface by acetylene using periodic density functional theory calculations combined with microkinetic simulations. Our calculation indicates that the end-bridge and di-σ configurations are the most stable adsorption configurations for acetylene adsorption on the Si(100) surface. Furthermore, we investigated the subsequent acetylene decomposition mechanisms based on these two most stable adsorption structures. We found that two possible paths for acetylene decomposition to form a carbon dimer on the Si surface in the end-bridge configuration. Among them, the minimum reaction pathway is acetylene diffusion to the hollow site and further step-by-step dehydrogenation, in which the rate-determining step is the removal of the first hydrogen atom. In di-σconfiguration, we also found two pathways to form the carbon dimer on the surface. The first pathway is the step-by-step dehydrogenation of acetylene, and another pathway is the rotation of acetylene and then the step-by-step dehydrogenation. Both of them compete with each other on the surface; however, their final structures are different.
    Our microkinetic simulation results suggest that the carbon dimer as an end-bridge structure can be formed at low temperature (580K), and the maximum carbon dimers can be obtained near a temperature of 660K. Whereas, at this maximum temperature, we also observed the carbon dimer formation from the di-σ adsorption configurations, which leads to the polycrystalline SiC formation. Subsequently, the coverage of the end-bridge carbon dimer (end-C2H2*) gradually decreased, as both C-H bond breaking and acetylene rotation to form end bridge configuration reactions compete each other. Our results suggest that if we want to get more single crystalline silicon carbide buffer layer, the temperature should be controlled near 660K and the temperature control careful is essential in the carbonization of the Si (100) surface by acetylene.

    ABSTRACT I 摘要 III 致謝 V CONTENTS VI LIST OF FIGURES VII LIST OF TABLES IX CHAPTER 1. INTRODUCTION 1 1.1 WIDE BANDGAP MATERIALS 1 1.2 HETEROEPITAXY 5 1.3 THE CHEMICAL VAPOR DEPOSITION PROCESS 7 1.4 SILICON (100) SURFACE 8 1.5 BUFFER LAYER 10 1.6 PRESENT STUDY 16 CHAPTER 2. COMPUTATIONAL DETAILS 17 2.1 METHOD 17 2.2 STATISTICAL THERMODYNAMICS 18 2.3 MICROKINETIC SIMULATIONS 21 2.4 SURFACE MODEL 25 CHAPTER 3. RESULTS AND DISCUSSION 28 3.1 ADSORPTION CONFIGURATIONS OF ACETYLENE ON SI(100) SURFACE 28 3.2 ELECTRONIC ANALYSIS OF INTERACTION BETWEEN ACETYLENE AND SI(100) SURFACE 35 3.3 C2H2 DECOMPOSITION ON SI(100) SURFACE 39 3.3.1 C2H2 decomposition at End-bridge configuration 39 3.3.2 C2H2 decomposition from the di-σ structure 48 CHAPTER 4. MICROKINETIC SIMULATION 52 CHAPTER 5. CONCLUSIONS 59 REFERENCES 62 APPENDIX 68

    1. Alves, L. F. S.; Gomes, R. C. M.; Lefranc, P.; Pegado, R. D. A.; Jeannin, P.; Luciano, B. A.; Rocha, F. V. In Sic Power Devices in Power Electronics: An Overview, 2017 Brazilian Power Electronics Conference (COBEP), 19-22 Nov. 2017; 2017; pp 1-8.
    2. Fatahilah, M. F.; Strempel, K.; Yu, F.; Vodapally, S.; Waag, A.; Wasisto, H. S., 3d Gan Nanoarchitecture for Field-Effect Transistors. Micro and Nano Engineering 2019, 3, 59-81.
    3. Hudgins, J. L.; Simin, G. S.; Santi, E.; Khan, M. A., An Assessment of Wide Bandgap Semiconductors for Power Devices. IEEE Transactions on Power Electronics 2003, 18, 907-914.
    4. Flack, T. J.; Pushpakaran, B. N.; Bayne, S. B., Gan Technology for Power Electronic Applications: A Review. Journal of Electronic Materials 2016, 45, 2673-2682.
    5. Cimalla, V.; Pezoldt, J.; Ambacher, O., Group Iii Nitride and Sic Based Mems and Nems: Materials Properties, Technology and Applications. J. Phys. D: Appl. Phys 2007, 40, 6386-6434.
    6. Krukowski, S.; Skierbiszewski, C.; Perlin, P.; Leszczynski, M.; Bockowski, M.; Porowski, S., Blue and Uv Semiconductor Lasers. Acta Physica Polonica B - ACTA PHYS POL B 2006, 37.
    7. Zielinski, M.; Leycuras, A.; Ndiaye, S.; Chassagne, T., Stress Relaxation During the Growth of 3c-Sic∕Si Thin Films. Applied Physics Letters 2006, 89, 131906.
    8. Feng, Z. C., Optical Properties of Cubic Sic Grown on Si Substrate by Chemical Vapor Deposition. Microelectronic Engineering 2006, 83, 165-169.
    9. Teker, K.; Jacob, C.; Chung, J.; Hong, M. H., Epitaxial Growth of 3c-Sic on Si(001) Using Hexamethyldisilane and Comparison with Growth on Si(111). Thin Solid Films 2000, 371, 53-60.
    10. Muñoz, R.; Gómez-Aleixandre, C., Review of Cvd Synthesis of Graphene. Chemical Vapor Deposition 2013, 19, 297-322.
    11. Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. Journal of Materials Chemistry 2011, 21, 3324-3334.
    12. Hersee, S. D.; Duchemin, J. P., Low-Pressure Chemical Vapor Deposition. Annual Review of Materials Science 1982, 12, 65-80.
    13. Nadhom, H.; Lundin, D.; Rouf, P.; Pedersen, H., Chemical Vapor Deposition of Metallic Films Using Plasma Electrons as Reducing Agents. Journal of Vacuum Science & Technology A 2020, 38, 033402.
    14. Sakai, O.; Takahashi, T., Improvement of Oxidation Resistance of Silicon Nitride Sintered Body by Cvd Si3n4 Coating. In Advanced Materials '93, Mizutani, N.; Akashi, K.; Kimura, T.; Ohno, S.; Yoshimura, M.; Maruyama, T.; Saito, Y.; Przybylski, K.; Stringer, J.; Kawamura, H.; Guo, J. K.; Ritchie, R. O.; Fukunaga, O.; Kamigaito, O.; Kijima, K.; MacChesney, J. B.; Munir, Z. A.; Boulos, M. I.; Miyamoto, Y.; Nakagawa, Z.; Mitomo, M.; Komeya, K.; Metselaar, R.; Tien, T. Y., Eds. Elsevier: 1994; pp 269-271.
    15. Ashrit, P., Chapter 2 - Introduction to Transition Metal Oxides and Thin Films. In Transition Metal Oxide Thin Film Based Chromogenics and Devices, Ashrit, P., Ed. Elsevier: 2017; pp 13-72.
    16. Sayago, I.; Hontañón, E.; Aleixandre, M., 9 - Preparation of Tin Oxide Nanostructures by Chemical Vapor Deposition. In Tin Oxide Materials, Orlandi, M. O., Ed. Elsevier: 2020; pp 247-280.
    17. Kodas, T., Chemical Vapor Deposition: Principles and Applications. Edited by M. L. Hitchman and K. F. Jensen, Academic Press, London 1993, 677 Pp., Hardback, $ 75, Isbn 0-12-349 670-5. Advanced Materials 1994, 6, 87-88.
    18. Ramstad, A.; Brocks, G.; Kelly, P. J., Theoretical Study of the Si(100) Surface Reconstruction. Physical Review B 1995, 51, 14504-14523.
    19. Appelbaum, J. A.; Baraff, G. A.; Hamann, D. R., The Si (100) Surface. Iii. Surface Reconstruction. Physical Review B 1976, 14, 588-601.
    20. Shkrebtii, A. I.; Di Felice, R.; Bertoni, C. M.; Del Sole, R., Ab Initio Study of Structure and Dynamics of the Si(100) Surface. Physical Review B 1995, 51, 11201-11204.
    21. Appelbaum, J. A.; Baraff, G. A.; Hamann, D. R., Si(100) Surface Reconstruction: Spectroscopic Selection of a Structural Model. Physical Review Letters 1975, 35, 729-732.
    22. Swartzentruber, B. S.; Smith, A. P.; Jónsson, H., Experimental and Theoretical Study of the Rotation of Si Ad-Dimers on the Si(100) Surface. Physical Review Letters 1996, 77, 2518-2521.
    23. Palummo, M.; Witkowski, N.; Pluchery, O.; Del Sole, R.; Borensztein, Y., Reflectance-Anisotropy Spectroscopy and Surface Differential Reflectance Spectra at the Si(100) Surface: Combined Experimental and Theoretical Study. Physical Review B 2009, 79, 035327.
    24. Uhrberg, R. I. G.; Hansson, G. V.; Nicholls, J. M.; Flodström, S. A., Experimental Studies of the Dangling- and Dimer-Bond-Related Surface Electron Bands on Si(100) (2\Ifmmode\Times\Else\Texttimes\Fi{}1). Physical Review B 1981, 24, 4684-4691.
    25. Shigekawa, H.; Miyake, K.; Ishida, M.; Hata, K., Dynamics of Phasons; Phase Defects Formed on Dimer Rows, and Related Structural Changes of the Si(100) Surface at 80 K Studied by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics 1997, 36, L294-L297.
    26. Tochihara, H.; Amakusa, T.; Iwatsuki, M., Low-Temperature Scanning-Tunneling-Microscopy Observations of the Si(001) Surface with a Low Surface-Defect Density. Physical Review B 1994, 50, 12262-12265.
    27. Hata, K.; Ishida, M.; Miyake, K.; Shigekawa, H., Surface Dynamics Studied by Perturbing the Surface with the Tip of a Scanning Tunneling Microscope—Si(100) at 80 K. Applied Physics Letters 1998, 73, 40-42.
    28. Shigekawa, H.; Hata, K.; Miyake, K.; Ishida, M.; Ozawa, S., Origin of the Symmetric Dimers in the Si(100) Surface. Physical Review B 1997, 55, 15448-15451.
    29. Uozumi, T.; Tomiyoshi, Y.; Suehira, N.; Sugawara, Y.; Morita, S., Observation of Si(100) Surface with Noncontact Atomic Force Microscope at 5k. Applied Surface Science 2002, 188, 279-284.
    30. Liu, Q.; Hoffmann, R., The Bare and Acetylene Chemisorbed Si(001) Surface, and the Mechanism of Acetylene Chemisorption. Journal of the American Chemical Society 1995, 117, 4082-4092.
    31. Zhu, Z.; Shima, N.; Tsukada, M., Electronic States of Si(100) Reconstructed Surfaces. Physical Review B 1989, 40, 11868-11879.
    32. Yang, C.; Kang, H. C., Geometry of Dimer Reconstruction on the C(100), Si(100), and Ge(100) Surfaces. The Journal of Chemical Physics 1999, 110, 11029-11037.
    33. Low, K. C.; Ong, C. K., Electronic Structure of the Si(100) C(4X2) and P(2X2) Surfaces. Physical Review B 1994, 50, 5352-5357.
    34. Da̧browski, J.; Pehlke, E.; Scheffler, M., Calculation of the Surface Stress Anisotropy for the Buckled Si(001)(1X2) and P(2X2) Surfaces. Physical Review B 1994, 49, 4790-4793.
    35. Buriak, J. M., Organometallic Chemistry on Silicon and Germanium Surfaces. Chemical Reviews 2002, 102, 1271-1308.
    36. Hamers, R. J.; Coulter, S. K.; Ellison, M. D.; Hovis, J. S.; Padowitz, D. F.; Schwartz, M. P.; Greenlief, C. M.; Russell, J. N., Cycloaddition Chemistry of Organic Molecules with Semiconductor Surfaces. Accounts of Chemical Research 2000, 33, 617-624.
    37. Bent, S. F., Organic Functionalization of Group Iv Semiconductor Surfaces: Principles, Examples, Applications, and Prospects. Surface Science 2002, 500, 879-903.
    38. Filler, M. A.; Bent, S. F., The Surface as Molecular Reagent: Organic Chemistry at the Semiconductor Interface. Progress in Surface Science 2003, 73, 1-56.
    39. Konečný, R.; Doren, D. J., Adsorption of Water on Si(100)-(2×1): A Study with Density Functional Theory. The Journal of Chemical Physics 1997, 106, 2426-2435.
    40. Nishino, S.; Powell, J. A.; Will, H. A., Production of Large‐Area Single‐Crystal Wafers of Cubic Sic for Semiconductor Devices. Applied Physics Letters 1983, 42, 460-462.
    41. Nishijima, M.; Yoshinobu, J.; Tsuda, H.; Onchi, M., The Adsorption and Thermal Decomposition of Acetylene on Si(100) and Vicinal Si(100)9°. Surface Science 1987, 192, 383-397.
    42. Huang, C.; Widdra, W.; Wang, X. S.; Weinberg, W. H., Adsorption of Acetylene on the Si(100)‐(2×1) Surface. Journal of Vacuum Science & Technology A 1993, 11, 2250-2254.
    43. Steckl, A. J.; Li, J. P., Effect of Carbonization Gas Precursor on the Heteroepitaxial Growth of Sic-on-Si by Rtcvd. MRS Proceedings 1992, 242, 537.
    44. Kim, K. C.; Park, C. I.; Roh, J. I.; Nahm, K. S.; Hahn, Y. B.; Lee, Y.-S.; Lim, K. Y., Mechanistic Study and Characterization of 3c-Sic(100) Grown on Si(100). Journal of The Electrochemical Society 2001, 148, C383.
    45. Li, J. P., Nucleation and Void Formation Mechanisms in Sic Thin Film Growth on Si by Carbonization. Journal of The Electrochemical Society 1995, 142, 634.
    46. Mogab, C. J.; Leamy, H. J., Conversion of Si to Epitaxial Sic by Reaction with C2h2. Journal of Applied Physics 1974, 45, 1075-1084.
    47. Nagasawa, H.; Yamaguchi, Y.-i., Suppression of Etch Pit and Hillock Formation on Carbonization of Si Substrate and Low Temperature Growth of Sic. Journal of Crystal Growth 1991, 115, 612-616.
    48. Yoshinobu, T.; Mitsui, H.; Tarui, Y.; Fuyuki, T.; Matsunami, H., Heteroepitaxial Growth of Single Crystalline 3c‐Sic on Si Substrates by Gas Source Molecular Beam Epitaxy. Journal of Applied Physics 1992, 72, 2006-2013.
    49. Wang, L.; Dimitrijev, S.; Han, J.; Zou, J., Deep Void Formation Mechanism in Si(100) During Its Carbonization Reaction with C2h2. Thin Solid Films 2007, 515, 6824-6826.
    50. Hirabayashi, Y.; Kaneko, S.; Akiyama, K., Hetero-Epitaxial Growth of 3c-Sic with Smooth Surface on Si(001) Using Acetylene Gas. Materials Science Forum 2009, 600-603, 247-250.
    51. Silvestrelli, P. L.; Toigo, F.; Ancilotto, F., Acetylene on Si(100) from First Principles: Adsorption Geometries, Equilibrium Coverages, and Thermal Decomposition. The Journal of Chemical Physics 2001, 114, 8539-8545.
    52. Rintelman, J. M.; Gordon, M. S., Adsorption of Acetylene on Si(100)-(2 × 1). The Journal of Physical Chemistry B 2004, 108, 7820-7826.
    53. Czekala, P. T.; Lin, H.; Hofer, W. A.; Gulans, A., Acetylene Adsorption on Silicon (100)-(4×2) Revisited. Surface Science 2011, 605, 1341-1346.
    54. Marsili, M.; Pulci, O.; Palummo, M.; Silvestrelli, P. L.; Del Sole, R., Electronic and Optical Properties of Acetylene and Ethylene on Si(001). Superlattices and Microstructures 2009, 46, 240-245.
    55. Liu, H.; Hamers, R. J., Stereoselectivity in Molecule−Surface Reactions:  Adsorption of Ethylene on the Silicon(001) Surface. Journal of the American Chemical Society 1997, 119, 7593-7594.
    56. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6, 15-50.
    57. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B 1996, 54, 11169-11186.
    58. Kresse, G., Ab Initio Molecular Dynamics for Liquid Metals. Journal of Non-Crystalline Solids 1995, 192-193, 222-229.
    59. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal--Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251-14269.
    60. Kresse, G., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B - Condensed Matter and Materials Physics 1999, 59, 1758-1775.
    61. Blöchl, P. E., Projector Augmented-Wave Method. Physical Review B 1994, 50, 17953-17979.
    62. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
    63. Klimeš, J.; Bowler, D. R.; Michaelides, A., Chemical Accuracy for the Van Der Waals Density Functional. Journal of Physics: Condensed Matter 2009, 22, 022201.
    64. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical Review B 1976, 13, 5188-5192.
    65. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. The Journal of Chemical Physics 2000, 113, 9901-9904.
    66. Xiao, P.; Sheppard, D.; Rogal, J.; Henkelman, G., Solid-State Dimer Method for Calculating Solid-Solid Phase Transitions. The Journal of Chemical Physics 2014, 140, 174104.
    67. Heyden, A.; Bell, A. T.; Keil, F. J., Efficient Methods for Finding Transition States in Chemical Reactions: Comparison of Improved Dimer Method and Partitioned Rational Function Optimization Method. The Journal of Chemical Physics 2005, 123, 224101.
    68. Monder, D. S.; Karan, K., Ab Initio Adsorption Thermodynamics of H2s and H2 on Ni(111): The Importance of Thermal Corrections and Multiple Reaction Equilibria. The Journal of Physical Chemistry C 2010, 114, 22597-22602.
    69. Blaylock, D. W.; Ogura, T.; Green, W. H.; Beran, G. J. O., Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions. The Journal of Physical Chemistry C 2009, 113, 4898-4908.
    70. Filot, I. A. W.; van Santen, R. A.; Hensen, E. J. M., The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie International Edition 2014, 53, 12746-12750.
    71. van Santen, R. A.; Markvoort, A. J.; Filot, I. A. W.; Ghouri, M. M.; Hensen, E. J. M., Mechanism and Microkinetics of the Fischer–Tropsch Reaction. Physical Chemistry Chemical Physics 2013, 15, 17038-17063.
    72. Cimalla, V.; Pezoldt, J.; Ambacher, O., Group Iii Nitride and Sic Based Mems and Nems: Materials Properties, Technology and Applications. Journal of Physics D: Applied Physics 2007, 40, 6386-6434.
    73. Tilli, M.; Haapalinna, A., Chapter One - Properties of Silicon. In Handbook of Silicon Based Mems Materials and Technologies, Lindroos, V.; Tilli, M.; Lehto, A.; Motooka, T., Eds. William Andrew Publishing: Boston, 2010; pp 3-17.
    74. Fronzoni, G.; Balducci, G.; De Francesco, R.; Romeo, M.; Stener, M., Density Functional Theory Simulation of Nexafs Spectra of Molecules Adsorbed on Surfaces: C2h4 on Si(100) Case Study. The Journal of Physical Chemistry C 2012, 116, 18910-18919.
    75. Kim, S.-W.; Lee, J.-H.; Kim, H.-J.; Cho, J.-H., Contribution of Van Der Waals Interactions to the Adsorption Energy of C2h2, C2h4, and C6h6 on Si(100). Chemical Physics Letters 2013, 557, 159-162.
    76. Demirel, G.; Çakmak, M.; Çaykara, T., Binding Formation of 12-Hydroxydodecanoic Acid on Si(001)-(2 × 2). The Journal of Physical Chemistry C 2007, 111, 4375-4378.
    77. Over, H.; Wasserfall, J.; Ranke, W.; Ambiatello, C.; Sawitzki, R.; Wolf, D.; Moritz, W., Surface Atomic Geometry of Si(001)-(2X1): A Low-Energy Electron-Diffraction Structure Analysis. Physical Review B 1997, 55, 4731-4736.
    78. Teng, T.-F.; Chou, C.-Y.; Hung, W.-H.; Jiang, J.-C., Application of Density Functional Theory and Photoelectron Spectra to the Adsorption and Reaction of H2s on Si (100). The Journal of Physical Chemistry C 2011, 115, 19203-19209.
    79. Duke, C. B., Semiconductor Surface Reconstruction:  The Structural Chemistry of Two-Dimensional Surface Compounds. Chemical Reviews 1996, 96, 1237-1260.
    80. Tao, F. F.; Bernasek, S. L. In Functionalization of Semiconductor Surfaces, 2012.
    81. Sorescu, D. C.; Jordan, K. D., Theoretical Study of the Adsorption of Acetylene on the Si(001) Surface. The Journal of Physical Chemistry B 2000, 104, 8259-8267.
    82. Cho, J.-H.; Kleinman, L., Adsorption Kinetics of Acetylene and Ethylene on Si(001). Physical Review B 2004, 69, 075303.
    83. Takeuchi, N., First Principles Calculations of the Adsorption of Acetylene on the Si(001) Surface at Low and Full Coverage. Surface Science 2007, 601, 3361-3365.
    84. Mezhenny, S.; Lyubinetsky, I.; Choyke, W. J.; Wolkow, R. A.; Yates, J. T., Multiple Bonding Structures of C2h2 Chemisorbed on Si(100). Chemical Physics Letters 2001, 344, 7-12.
    85. Silvestrelli, P. L.; Pulci, O.; Palummo, M.; Del Sole, R.; Ancilotto, F., First-Principles Study of Acetylene Adsorption on Si(100): The End-Bridge Structure. Physical Review B 2003, 68, 235306.
    86. Lu, X.; Lin, M. C., Bonding Configurations of Acetylene Adsorbed on the Si(100)-2×1 Surface Predicted by Density Functional Cluster Model Calculations. Physical Chemistry Chemical Physics 2000, 2, 4213-4217.
    87. Nakai, H.; Katouda, M.; Kawamura, Y., Energy Density Analysis of Cluster Size Dependence of Surface-Molecule Interactions: H2, C2h2, C2h4, and Co Adsorption onto Si(100)-(2×1) Surface. The Journal of Chemical Physics 2004, 121, 4893-4900.
    88. Taylor, P. A.; Wallace, R. M.; Cheng, C. C.; Weinberg, W. H.; Dresser, M. J.; Choyke, W. J.; Yates, J. T., Adsorption and Decomposition of Acetylene on Silicon(100)-(2.Times.1). Journal of the American Chemical Society 1992, 114, 6754-6760.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE