簡易檢索 / 詳目顯示

研究生: 黃祥恩
Hsiang-en Huang
論文名稱: 低溫矽膜濺鍍磊晶技術之開發
Development of silicon film epitaxy at low temperature by sputtering
指導教授: 葉文昌
Wen-chang Yeh
口試委員: 李奎毅
Kuei-yi Lee
黃鶯聲
Ying-sheng Huang 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 磊晶RamanRHEED理想因子
外文關鍵詞: Epitaxy, Raman, RHEED, Ideality Factor
相關次數: 點閱:193下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在濺鍍壓力為5 mTorr及載台溫度為250℃的條件下成功開發出矽膜濺鍍磊晶技術,其所需真空度為1.0×10-6 Torr。另外在檢測磊晶矽膜的品質部份,本研究以Raman、RHEED系統量測,由於這兩系統的量測深度不同,因此可利用Raman系統來檢測磊晶矽膜的內部以及介面處的品質,再配合RHEED系統來觀察磊晶矽膜靠近表面處的變化情況,最後利用TEM來觀測磊晶矽膜內的原子排列情況,並已確定可成功地磊晶。
    最後,本研究直接在P型矽晶圓上濺鍍一層N+的磊晶矽膜,在最高製程溫度小於250℃下製作出PN二極體,其最佳理想因子(Ideality Factor)為1.67。


    We have demonstrated successful epitaxial growth of silicon film by sputtering technique. The optimun conditions are sputtering pressure is 5 mTorr, substrate temperature is 250℃, before epitaxy by sputtering the base vacuum just need 1.0×10-6 Torr. In addition, in the part that measure the quality of epitaxial sulicon film, we uses Raman and RHEED system, due to the measured depth of this two system is different, then we can use Raman system to measure the quality of epitaxial silicon film which the bulk and interface, and also can use RHEED system to oberve the change which near the surface of epitaxial silicon film, Finally we use TEM to observe the permutation of atom in the epitaxial silicon, and have make sure that it can epitaxy successfully.
    In the end, we directly grow a epitaxial layer which is N+ on the P-type substrate by sputtering, for fabricating PN-diode at the conditions of the most process temperature is below 250℃, the best ideality factor of the PN-diode is 1.67.

    第一章 序論 1-1 前言……………….……………………………… ﹝1﹞ 1-2 磊晶原理………….……………………………… ﹝3﹞ 1-3 磊晶技術介紹…….………..…………………….. ﹝5﹞ 1-4 研究背景………….……………………………… ﹝8﹞ 1-5 研究目標………….……………………………… ﹝9﹞ 1-6 論文流程………….……………………………… ﹝10﹞ 第二章 濺鍍磊晶技術之開發 2-1 前言……………….……………………………… ﹝11﹞ 2-2 研究背景………….……………………………… ﹝11﹞ 2-3 研究方法…...…………………………………….. ﹝12﹞ 2-4 實驗結果與討論..……………………………….. ﹝20﹞ 2-5 本章結論………….……………………………… ﹝36﹞ 第三章 低溫矽膜濺鍍磊晶暨PN二極體製作 3-1 前言…………….………………………………… ﹝39﹞ 3-2 研究方法……….………………………………… ﹝39﹞ 3-2.1 MESA結構之PN二極體製作…………………… ﹝40﹞ 3-2.2 PLANAR結構之PN二極體製作..………………. ﹝44﹞ 3-3 實驗結果與討論……….………………………… ﹝49﹞ 3-4 本章結論…….…………………………………… ﹝55﹞ 第四章 結論…………………………………………………. ﹝56﹞ 參考文獻………………………………………………………. ﹝59﹞ 著作……………………………………………………………. ﹝66﹞

    [1]G. A. Smith, T. N. Dang, T. R. Nelson, J. L. Brown, D. Tsvetkov, A. Usikov, and V. Dmitriev, “341 nm Emission from Hydride Vapor-Phase Epitaxy Ultraviolet Light-Emitting Diodes”, J. Appl. Phys., Vol.95, No.12, pp.8247-8251 (2004).

    [2]N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-Beam Epitaxy of InSb/GaSb Quantum Dots”, J. Appl. Phys., Vol.101, No.12, pp.4309-4316 (2007).

    [3]F. Lahoz, E. Daran, X. Zhang, A. Muñoz-Yagüe, R. Cases, and R. Alcalá, “Hetero- and Homoepitaxial Nd3+ -Doped LaF3 Thin Films Grown by Molecular Beam Epitaxy: A spectroscopic study”, J. Appl. Phys., Vol.86, No.7, pp.3699-3704 (1999).

    [4]J. S. Gao, H. Nakashima, N. Sakai, D. W. Gao, J. L. Wang, K. Furukawa, and K. Muraoka, “Growth of Epitaxial Silicon Film at Low Temperature by Using Sputtering-Type Electron Cyclotron Resonance Plasma”, Jpn. J. Appl. Phys., Vol.38, No.3A, pp.L220-L222 (1999).

    [5]J. S. Gao, H. Nakashima, J. L. Wang, K. Iwanaga, D. W. Gao, K. Furukawa, and K. Muraoka, “Effect of Substrate Bias on Si Epitaxial Growth Using Sputtering-Type Electron Cyclotron Resonance(ECR) Plasma”, Jpn. J. Appl. Phys., Vol.38, No.11B, pp.L1293-L1295 (1999).

    [6]J. S. Gao, H. Nakashima, J. L. Wang, K. Iwanaga, H. Nakashima, K. Ikeda, K. Furukawa, and K. Muraoka, “Optimum Discharge Condition of DC Bias Electron Cyclotron Resonance Plasma Sputtering for High Quality Si Epitaxial Growth”, Jpn. J. Appl. Phys., Vol.39, No.5A, pp.L2834-2838 (2000).

    [7]E. V. Monakhov, A. Yu. Kuznetsov, and B. G. Svensson, “Comparative Study of Divacancy and E-Center Electronic Levels in Si and Strained Si0.87Ge0.13 Layers”, J. Appl. Phys., Vol.87, No.9, pp.4629-4631 (2000).

    [8]H. Jörg Osten, “Band-Gap Changes and Band Offsets for Ternary Si1–x–yGexCy Alloys on Si(001)”, J. Appl. Phys., Vol.84, No.5, pp.2716-2721 (1998).

    [9]D. Winau, R. Koch, A. Fuhrmann, and K. H. Rieder, “Films Growth Studies with Intrinsic Measurement:Polycrystalline and Epitaxial Ag, Cu, and Au Films on Mica (0001)”, J. Appl. Phys., Vol.70, pp.3081-3087 (1991).

    [10]J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Tompson, “The Dynamic Competition between Stress Generation and Relaxation Mechanism during Coalescence of Volmer-Weber Thin Films”, J. Appl. Phys., Vol.87, pp.4886-4897 (2001).

    [11]L. D. Landau and I. M. Lifshitz, “Statistical Physics” , 3rd edition., Oxford, Pergamon Press Ltd., pp.531-533 (1980).

    [12]J. I. Pankove and T. D. Moustakas, “Gallium Nitride (GaN)”, 2rd edition., San Diego, Academic Press, pp.59-60 (1999).

    [13]T. Ohmi, K. Matsudo, T. Shibata, T. Ichikawa, and H. Iwabuchi, “Low-Temperature Silicon Epitaxy by Low-Energy Bias Sputtering”, Appl. Phys. Lett., Vol.53, No.5, pp.364-366 (1988).

    [14]A. Kobayashi, J. Ohta, Y. Kawaguchi, and H. Fujioka, “Room Temperature Epitaxial Growth of AlGaN on ZnO by Pulsed Laser Deposition”, Appl. Phys. Lett., Vol.89, No.11, pp.1918-1921 (2006).

    [15]C. Mukherjee, H. Seitz, and B. Schröder, “Growth of Epitaxial Germanium Films on Silicon Using Hot-Wire Chemical Vapor Deposition”, Appl. Phys. Lett., Vol.78, pp.3457-3460 (2001).

    [16]J. Thiesen, E. Iwaniczko, K. M. Jones, A. Mahan, and R. Crandall, “Growth of Epitaxial Silicon at Low Temperatures Using Hot-Wire Chemical Vapor Deposition”, Appl. Phys. Lett., Vol.75, pp.992-995 (1999).

    [17]O. P. Karpenko, S. M. Yalisove, and D. J. Eaglesham, “Surface Roughening During Low Temperature Si(100) Epitaxy”, J. Appl. Phys., Vol.82, No.3, pp.1157-1165 (2001).

    [18]E. S. Tok, A. D. Hartell, and J. Zhang, “Kinetics of Si Growth from Hydride Precursors on As-Passivated Si(001) Surface”, Appl. Phys. Lett., Vol.78, No.7, pp.919-921 (2001).

    [19]X. Jiang, K. Schiffmann, A. Westphal, and C. P. Klages, “Atomic-Force-Microscopic Study of Heteroepitaxial Diamond Nucleation on (100) Silicon”, Appl. Phys. Lett., Vol.63, No.9, pp.1203-1205 (2002).

    [20]K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, T. Nakashima, and T. Kurosawa, “Analysis of Defects in Polycrystalline Silicon Thin Films Using Raman Scattering Spectroscopy”, Jpn. J. Appl. Phys., Vol.42, No.11, pp.6742-6747 (2003).

    [21]G. Viera, S. Huet, and L. Boufendi, “Crystal Size Temperature Measurements in Nanostructured Silicon Using Raman Spectroscopy”, J. Appl. Phys., Vol.90, No.8, pp.4175-4183 (2001).

    [22]P. Lengsfeld, N. H. Nickel, C. Genzel, and W. Fuhs, “Stress in Undoped and Doped Laser Crystallized Poly-Si”, J. Appl. Phys., Vol.91, No.11, pp.9128-9135 (2002).

    [23]C. Georgi, M. Hecker, and E. Zschech, “Effects of Laser-Induced Heating on Raman Stress Measurements of Silicon and Silicon-Germanium Structures”, J. Appl. Phys., Vol.101, No.12, pp.3104-3109 (2007).

    [24]K. F. Dombrowski, I. D. Wolf, and B. Dietrich, “Stress Measurements Using Ultraviolet Micro-Raman Spectroscopy”, Appl. Phys. Lett., Vol.75, pp.2450-2452 (1999).

    [25]D. K. Sarkar, I. Rau, M. Falke, H. Giesler, S. Teichert, G. Beddies, and H. J. Hinneberg, “Structure, Interface Roughness, and Growth Mechanism of Reactive Deposition Epitaxy of CoSi2 on Si(100) Substrates”, Appl. Phys. Lett., Vol.78, pp.3604-3607 (2001).

    [26]S. Ruffell, J. E. Bradby, and J. S. Williams, “Annealing Kinetics of Nanoindentation-Induced Polycrystalline High Pressure Phases in Crystalline Silicon”, Appl. Phys. Lett., Vol.90, No.13, pp.1901-1904 (2007).

    [27]S. I. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-Temperature Solid-Phase Crystallization of Amorphous Silicon Thin Films Deposited by RF Magnetron Sputtering with Substrate Bias”, Appl. Phys. Lett., Vol.89, No.02, pp.2104-2107 (2006).

    [28]T. Takami, “Practice of The Analysis of Reflection High-Energy Electron Diffraction Pattern”, 表面科學, Vol.25, No.06, pp.363-369 (2004).

    [29]T. Ohmi, T. Ichikawa, T. Shibata, and H. Iwabuchi, “Crystal Structure Analysis of Epitaxial Silicon Films Formed by a Low Kinetic Energy Particle Process”, Appl. Phys. Lett., Vol.54, No.6, pp.523-525 (1989).

    [30]D. W. Bellavance and J. C. Campbell, “Room-Temperature Mesa Lasers Grown by Selective Liquid Phase Epitaxy”, Appl. Phys. Lett., Vol.29, pp.162-165 (1976).

    [31]R. Joly, “A Mesa p-n Diode Array Acoustic Surface Wave Convolver”, Appl. Phys. Lett., Vol.29, pp.525-529 (1976).

    [32]G. Yu, Q. Pei, and A. J. Heeger, “Planar Light-Emitting Devices Fabricated with Luminescent Electrochemical Polyblends”, Appl. Phys. Lett., Vol.70, pp.934-937 (1997).

    [33]G. S. Oehrlein and R. Kalish, “Silicon Loss and Transient Etch Rate in Selective Reactive Ion eEtching ofOxide Overlayers”, Appl. Phys. Lett., Vol.54, pp.2698-2701 (1989).

    [34]Y. Kuo, “Reactive Ion Etch Damages inInverted, Trilayer Thin-Film Transistor”, Appl. Phys. Lett., Vol.61, PP.2790-2792 (1992).

    QR CODE