簡易檢索 / 詳目顯示

研究生: 王峙豪
Chih-Hao Wang
論文名稱: 以金奈米粒子 /二維奈米黏土奈米複合材料製 備表面增強拉曼光譜之生物感測元件應用
Preparation of Gold Nanoparticles/Nanoclay Hybrid for biosensing of Surface-enhanced Raman spectroscopy
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 劉定宇
Ting Yu-Liu
孫亞賢
Ya-Sen Sun
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 表面增強拉曼光譜奈米雲母片金奈米粒子奈米複合材料3D熱點效應
外文關鍵詞: Surface enhanced Raman spectroscopy, Nanoclay, AuNPs, Nano composite, 3D hot junction
相關次數: 點閱:430下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功製備了金奈米粒子
    /奈米黏土之奈米複合物應用於表面
    增強拉曼散射( SERS)生物傳感器。奈米雲母通過親水聚合物
    Jeffamine ED-2003 雙親性 聚合物 PIB-ED2003進行改 質 ,並用於穩
    定金奈米粒子的成長。我們分別探討了插層、脫層以及改變親疏水性
    之 SERS基板對於細菌的檢測的影響。脫層的 SERS基板透過自組裝
    的方式將 AuNPs還原在基板上產生 3D熱點效應增強拉曼訊號。從
    穿透式電子顯微鏡 (transmission Electron Microscope, TEM)可以明顯
    看見奈米雲母片上的金粒子大小約為 5~10 nm之間,由於奈米雲母
    片的厚度僅僅只有 1 nm的厚度,導致雙面吸附於奈米雲母片上的金
    奈米粒子可以產生良好的 z軸 -方向 3D熱點效應。藉由檢測 DNA中
    的生物分子 adenine可以展現出良好的拉曼增強因子 (enhancement factor, EF)可達 8.9 × 106 並且偵測極限可達 10-8M 可以有效且快
    速的檢測出人型葡萄球菌及大腸桿菌 希望未來能夠 應用於 快速檢測
    敗血症之相關細菌及食品安全中常見之菌種。


    The nanoparticle arrays of Au-nanoclay were successfully fabricated for surface-enhanced Raman scattering (SERS) biosensing.The Mica clays were modified by hydrophilic polymer Jeffamine ED-2003,amphiphilic polymer PIB-ED2003 and utilize to immobile gold nanoparticles. We explored the effects of intercalation, exfolitaion , and the modification of hydrophilic and hydrophobic SERS substrates on the detection of bacteria.The hydrophilic nanohybird SERS substrate display the huge Raman enhancement by 3D hot spots produced from self-assembly of AuNPs on the nanoclays. The characterizations of Au-nanoclays would be evaluated by transmission electron microscopy, X-ray diffraction, Zeta potential and Raman spectroscopy using a 633 nm laser. The result shows that the diameter of Au nanoparticles is 5-10nm and the size nanoclays is about 500 nm × 500 nm x 1 nm. Furthermore, the hybrid substrate films formed three-dimensional (3D) hot-junctions and exhibited an SERS enhancement factor (EF) of 8.9 × 106 and limit of detection is 10-8M toward adenine molecules from DNA, which served as a model biomolecular target. The bacteria (S.H and E.Coli) could be quickly and sensitively detected by the flexible Au-nanoclays SERS substrate using Raman spectroscopy. It would be anticipated to further apply to rapidly detect Septicemia and food safety field.

    誌謝 I 中文摘要 II ABSTRACT III 第一章 緒論 1 第二章 文獻回顧 3 2.1 奈米材料介紹 3 2.2 二維材料介紹 5 2.2.1 黏土介紹 6 2.2.2 黏土基本性質 8 2.2.3 黏土有機化改質分散 8 2.2.4 脫層黏土介紹 11 2.3 奈米金粒子介紹 12 2.3.1 奈米金粒子之性質與結構 13 2.3.2 奈米金粒子合成方式及生成機制 14 2.3.3 奈米金粒子增強SERS訊號 16 2.4 界面活性劑 18 2.4.1 界面活性劑介紹 18 2.4.2 分散劑聚醚胺介紹 19 2.5 細菌介紹 20 2.6 表面增強拉曼散射 25 2.6.1 拉曼光譜之簡介及原理 25 2.6.2 表面增強拉曼散射之簡介及原理 28 2.6.3 表面增強拉曼散射應用 29 第三章 實驗材料與方法 31 3.1實驗流程圖 31 3.2 實驗藥品/耗材名稱 32 3.3 實驗設備 35 3.4實驗儀器 36 3.5 實驗步驟 39 3.5.1 POE-Mica製備 39 3.5.2 脫層劑T403AEO合成 39 3.5.3 脫層黏土(NMP)製備 39 3.5.4 雙性高分子分散劑PIB-ED2003-PIB合成 40 3.5.5 Au/POE-Mica製備 40 3.5.6 Au/NMP製備 41 3.5.7 Au/POE-NMP製備 41 3.5.8 Au/PIB-ED-PIB/NMP製備 41 3.5.9 金黃色葡萄球菌及大腸桿菌培養 42 3.6表面增強拉曼散射之檢測方法 43 第四章 結果與討論 44 4.1 奈米黏土改質及鑑定 44 4.1.1 XRD檢測分析 44 4.1.2 Zeta Potential 分析檢測 45 4.2 高分子型分散劑PIB-ED2003-PIB合成及鑑定 46 4.3 合成AU/奈米黏土複合材料 48 4.3.1 Au/POE-Mica複合物之合成及分析 48 4.3.2 Au/NMP 複合物之合成及分析 52 4.3.3 Au/POE-NMP 複合物之合成及分析 56 4.3.4 Au/PIB-ED/NMP 複合物之合成及分析 60 4.4奈米黏土SERS基板效應與應用討論 65 4.4.1四種奈米黏土SERS基板效率 65 4.4.2 四種奈米黏土SERS基板之偵測及限 66 4.5細菌檢測 68 4.5.1 Au/POE-Mica、Au/NMP及Au/POE-NMP之SERS檢測細菌結果 68 4.5.2 Au/PIB-ED/NMP之SERS檢測細菌結果 71 第五章 結論 76 第六章 參考資料 78

    [1] B.B. Kaul, R.E. Holt and V.L. Schlegel, Application of surface-enhanced resonance Raman scattering spectroscopy to the analysis of covalently modified electrode surfaces, Anal. Chem, 1988,60,1580-1586.
    [2] D.L. Schodek, P. Ferreira and M.F. Ashby, Nanomaterials, nanotechnologies and design: an introduction for engineers and architects, Butterworth-Heinemann,2009.
    [3] T.-Y. Liu, J.-Y. Ho, J.-C. Wei, W.-C. Cheng, I.-H. Chen, J. Shiue, H.-H. Wang, J.-K. Wang, and Y.-L. Wang,Label-free and culture-free microbe detection by three dimensional hot-junctions of flexible Raman-enhancing nanohybrid platelets, Anal. Chem,2014, 1136-1143.
    [4] 蘇雅雯, 神奇的二維材料-Graphene 與 MoS2, 國家奈米元件實驗室奈米通訊, 2011.
    [5] J.Konta, Clay and man: clay raw materials in the service of man,, Appl. Clay Sci,1995,275-335.
    [6] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, Halloysite clay minerals–a review, Clay Miner ,2005.
    [7] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi and O.J. Kamigaito, Synthesis of nylon 6-clay hybrid, J Mater RES,1993, 1179-1184.
    [8] S.S. Ray and M.J.Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog Polym SCI , 2003,1539-1641.
    [9] X. Fu, and S.J.P. Qutubuddin, Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene,Polymer ,2001,42,807-813.
    [10] R.A. Vaia, H. Ishii, and E.P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem Mater ,1993, 1694-1696.
    [11] 蔡.J, 奈米黏土-高分子複合材料之發展與應用, 奈米專刊 , 2001 , 126-133.
    [12] Z. Wang, and T.J. Pinnavaia, Hybrid organic− inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer, Chem Mater ,1998, 10,1820-1826.
    [13] C.-C. Chu, M.-L. Chiang, C.-M. Tsai, and J.-J.J.M. Lin, Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts, Macromolecules , 2005, 38 ,6240-6243.
    [14] M. Faraday, X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light ,1857 ,147, 145-181.
    [15] K.A. Willets, and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu Rev Phys Chem,2007,58, 267-297.
    [16] 高逢時,科學發展, 奈米科技 , 2005 ,66-71.
    [17] H. Zhou, I. Honma, H. Komiyama, and J.J Haus, Controlled synthesis and quantum-size effect in gold-coated nanoparticles, Phys Rev B,1994,50, 12052.
    [18] B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, and L.M.J.n.t. Liz-Marzán, LSPR-based nanobiosensors, Phys Rev B, 2009 ,4, 244-251.
    [19] 曾賢德 , 金奈米粒子的表面電漿共振特性: 耦合, 應用與樣品製作,物理雙月刊 , 2010 , 32 ,126-135.
    [20] C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, and J. Ruiz, D.J.C.C. Astruc, Sodium borohydride stabilizes very active gold nanoparticle catalysts, Chem Commun ,2014 ,50,14194-14196.
    [21] V.K. LaMer, and R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J AM Chem Soc , 1950, 72, 4847-4854.
    [22] C. Jiang, Synthesis, Assembly, and Integration of Magnetic Nanoparticles for Nanoparticle-Based Spintronic Devices, 2017 .
    [23] E. Le Ru, P. Etchegoin, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.J.C.A.P. Krenn, Surface enhanced Raman spectroscopy on nanolithography-prepared substrates, Curr Appl Phys , 2008 , 8 , 467-470.
    [24] B. Wiley, Y. Sun, and Y.J. Xia, Synthesis of silver nanostructures with controlled shapes and properties, Account Chem Res , 2007 , 40 , 1067-1076.
    [25] J.M. Harris, Introduction to biotechnical and biomedical applications of poly (ethylene glycol), Poly (ethylene glycol) Chemistry, Springer , 1992 , 1-14 .
    [26] J.C. PrePrints, Bioremediation of Contaminated Water-Based on Various Technologies, Oalib J , 2014 ,1,1-13.
    [27] J. Cheng, Bioremediation of Contaminated Water-Based on Various Technologies, Open Access Library PrePrints , 2014 , 1 , 1-13.
    [28] G.J. Tortora, B.R. Funke, C.L. Case, and T.R. Johnson, an introduction, Benjamin Cummings San Francisco, Microbiology , 2004 .
    [29] P.J.B. Mosier-Boss, Review on SERS of Bacteria, Biosensors ,2017 ,7, 51.
    [30] A.M. Palazzolo-Ballance, M.L. Reniere, K.R. Braughton, D.E. Sturdevant, M. Otto, B.N. Kreiswirth, E.P. Skaar, and F.R. DeLeo, Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus, J Immunol ,2008 ,180,500-509.
    [31] E.L. Oginsky, and W.W. Umbreit, An introduction to bacterial physiology, 1959 , 801.
    [32] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier, 2012 .
    [33] J.A. Creighton, C.G. Blatchford, M.G. Albrecht, and Faraday Transactions 2: Molecular, C. Physics, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J Chem Soc, 1979 , 75 , 790-798.
    [34] M. Fleischmann, and P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem Phys Lett , 1974 , 26 ,163-166.
    [35] C.L. Haynes, and R.P Van Duyne, Plasmon-sampled surface-enhanced Raman excitation spectroscopy, J Phys Chem , 2003 , 107 , 7426-7433.
    [36] J.J. McDermott, Fabrication and purification of self-motile noble metal-semiconductor active colloidal devices, 2001.
    [37] K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, and R.P.J.J.o.t.A.C.S. Van Duyne, Toward a glucose biosensor based on surface-enhanced Raman scattering, J Am Chem, 2003 , 125 , 588-593 .
    [38] T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, C.-H. Lin, J.-K. Wang, and Y.-L.J.N.c. Wang, Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood, Nat Commun , 2011 , 2 , 538.
    [39] Y.N. Polivanov, Raman scattering of light by polaritons, Sov Phys Uspekhi , 1978 , 21 , 805 .
    [40] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Anal Chem, 1997 , 78 , 1667.
    [41] W.E. Doering, M.E. Piotti, M.J. Natan, and R.G. Freeman, SERS as a foundation for nanoscale, optically detected biological labels, Adv Mater , 2007 ,19, 3100-3108.
    [42] X. Xu, Y. Hou, X. Yin, L. Bao, A. Tang, L. Song, F. Li, S. Tsang, K. Wu, and H.J.C. Wu, Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor, 2012 , 148 ,886-895.
    [43] D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J.J.A. Popp, Surface-enhanced Raman spectroscopy (SERS): progress and trends, Springer, 2012 ,403, 27-54.
    [44] H. Chu, Y. Liu, Y. Huang, and Y.J Zhao, A high sensitive fiber SERS probe based on silver nanorod arrays, Opt Express ,2007 , 15 ,12230-12239.
    [45] J. Zhao, A.O. Pinchuk, J.M. McMahon, S. Li, L.K. Ausman, and A.L. Atkinson, G.C. Schatz, Methods for describing the electromagnetic properties of silver and gold nanoparticles, Acc Chem Res , 2008 , 41 , 1710-1720.
    [46] S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, and R.P Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, Phys Chem Chem Phys ,2013 , 15 ,21-36.
    [47] C.J. Orendorff, A. Gole, T.K. Sau, and C.J.J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal Chem , 2005, 77 , 3261-3266.
    [48] H. Ma,and J.J. Hao, Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings, Chem Soc Rev , 2011 , 40 , 5457-5471.
    [49] S. Yang, and Y.J.N. Lei, Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications, Nanoscale , 2011 , 3 ,2768-2782.
    [50] H.H. Wang, C.Y. Liu, S.B. Wu, N.W. Liu, C.Y. Peng, T.H. Chan, C.F. Hsu, J.K. Wang, and Y.L.J.A.M. Wang, Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps, Adv Mater , 2006 ,18,491-495.
    [51] T.-Y. Liu, C.-L. Chen, Y.-C. Lee, T.-Y. Chan, Y.-L. Wang, and J.-J.J.A.a.m. Lin, interfaces, First observation of physically capturing and maneuvering bacteria using magnetic clays, Acs Appl Mater , 2015 , 8 ,411-418.
    [52] H.-C. Lin, Y.-A. Su, T.-Y. Liu, Y.-J. Sheng, and J.-J.J.C. Lin,Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications, Collid Surface B ,2017 ,152, 459-466.
    [53] A. Sivanesan, E. Witkowska, W. Adamkiewicz, Ł. Dziewit, A. Kamińska, and J.J.A. Waluk, Nanostructured silver–gold bimetallic SERS substrates for selective identification of bacteria in human blood, Analyst , 2014 , 139 ,1037-1043.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE