簡易檢索 / 詳目顯示

研究生: 凃怡果
Yi-Guo Tu
論文名稱: 分子動力學模擬單晶銅材的奈米壓印
Molecular Dynamics Simulating Nanoimprint on Single Crystal Copper
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 林紀穎
none
陳雙源
none
呂道揆
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 141
中文關鍵詞: 分子動力學奈米壓印單晶銅
外文關鍵詞: molecular dynamics, nanoimprint, single crystal copper
相關次數: 點閱:340下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用分子動力學模擬鑽石衝頭對單晶銅的奈米壓印。並且改變不同的壓印晶面、材料厚度、壓印速度,探討其塑性變形機制與差排滑動行為。所使用的模型在X、Y面使用週期性邊界,銅使用嵌入式(EAM)勢能函數建構其模型,而銅對碳原子間的交互作用則使用二體的Morse勢能函數。
模擬結果顯示,在(001)晶面壓印時,塑性變形由(-1-1 1)、(1-1-1)、(-1 1-1)與(111)滑動面同時啟動完成。在(101)晶面壓印時,(-1-1 1) 與 (1-1-1)滑動面與壓印方向平行,因此塑性變形由(-1 1-1)與(111)滑動面主導。在(111)晶面壓印時,塑性變形由((-1-1 1)、(1-1-1)、(-1 1-1)與(111)滑動面同時啟動完成,又(111)晶面本身為滑動面之一,因此差排會從材料側面射出。不同材料厚度的條件下,隨著厚度增加,固定邊界阻礙效果減弱,差排造成無法移動的效應減少,可降低成形力量。此外,高速壓印塑性變形並非靠差排滑移,而是靠破壞原子間的鍵結。


The research studies the nanoimprinting of singal crystal copper with the diamond punch by molecular dynamics. The effects of plastic deformation and dislocation slip on imprinting force are observed with the various imprinting plane, material thickness, imprinting velocity. The periodic boundary condition are used in x and y direction. The interactions between Cu atoms in the workpiece are described by a embedded-atom method(EAM) potential, and interactions between Cu atoms and C atoms are described by two body potential.
The simulation results show that when imprinting on the (001) plane, the partial dislocations are operated on the (-1-1 1)、(1-1-1)、(-1 1-1) and (111) slip plane. As the imprinting on the (101) plane, the (-1-1 1) and (1-1-1) slip plane are parallel with (101) plane, so the partial dislocations are operated on (-1 1-1) and (111). As the imprinting on the (111) plane,the partial dislocations are operated on the (-1-1 1)、(1-1-1)、(-1 1-1) and (111) slip plane, the (111) plane is also slip plane, so the partial dislocations will move out the material flank. For different material thickness, dislocation effects decrease with material thickness.

摘要 I Abstract II 誌謝 IV 目錄 V 表索引 VII 圖索引 VIII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 3 第二章 分子動力學基礎理論 7 2.1 分子動力學的基本假設 7 2.2 勢能函數 7 2.3 運動方程式與演算法 11 2.4 Verlet 表列法 14 2.5 週期性邊界 15 2.6 最小映像法則 15 2.7 無因次化 16 2.8 Centrosymmetry參數 17 2.9 溫度場之評估 18 第三章 模擬步驟與模型建立 30 3.1 模擬步驟 30 3.1.1 初始設定 30 3.1.2 平衡 32 3.1.3 動態模擬 33 第四章 結果與討論 39 4.1 Morse勢能函數之參數對壓印所產生的影響 39 4.2 單晶銅奈米壓印分析 41 4.2.1 單晶銅(001)晶面的奈米壓印分析 41 4.2.1.1 衝頭壓入行為分析 41 4.2.1.2 保壓行為分析 47 4.2.1.3 衝頭回縮行為分析 48 4.2.2 單晶銅(101)晶面的奈米壓印分析 50 4.2.2.1 衝頭壓入行為分析 50 4.2.2.2 保壓行為分析 53 4.2.2.3 衝頭回縮行為分析 54 4.2.3 單晶銅(111)晶面的奈米壓印分析 56 4.2.3.1 衝頭壓入行為分析 56 4.2.3.2 保壓行為分析 58 4.2.3.3 衝頭回縮行為分析 59 4.2.4 不同晶面力量分析 61 4.2.5 不同晶面回彈分析 63 4.2.6 不同晶面壓印形貌分析 64 4.3 翼板對壓印行為的影響 65 4.3.1 壓印力量分析 65 4.3.2 回彈分析 67 4.4 材料厚度對壓印影響 68 4.4.1 壓印力量分析 68 4.4.2 回彈分析 70 4.5 不同壓印速度對單晶銅材之影響 70 4.6 不同衝頭形狀之影響 71 4.6.1 不同衝頭深寬比對成形影響 71 4.6.2 不同衝頭幾何對黏模影響 72 第五章 結論與建議 134 5.1 結論 134 5.2 未來研究方向與建議 135 參考文獻 137

1.Nicholas Metropolis, ArianNa W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, “Equation of State Calculations by Fast Computing Machines,” J. chem. phys., Vol.21, No.6, pp.1087-1092(1953).
2.J. H. Irving and John G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics,” J. chem. phys., Vol.18, No.6, pp.817-829(1950).
3.Loup Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of LenNard-Jones Molecules,” Phys.reV., Vol.159, No.1, pp.98-103(1967).
4.B. Quentrec, and C. Brot, “New Method for Neighbors in Molecular Dynamics Computations,” J. comput. phys., Vol.13, pp.430-432 (1973).
5.D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. phys. rep., Vol.9, pp.1-53(1988).
6.Madeleine Meyer and Vallilis Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications,” Kluwer Academic Publishers, USA,(1991).
7.U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton,“Atomistic mechanisms and dynamics of adhesion,nanoindentation and fracture”, Science Vol. 248, 454(1990).
8.U. Landman, W. D. Luedtke, J. Ouyang, and T. K. Zia, “Nanotribology and the stability of nanostructures”, Jpn. J. Appl.Phys. Vol. 32, 1444(1993).
9.H. Rafii-Tabar, and Y. Kawazon, “Dynamics of atomically thin layers-surface interactions in tip-substrate”, Jpn. J. Appl. Phys. Vol. 32, 1394(1993).
10.K. Komvopoulos, and W. Yan, “Molecular dynamics simulation of single and repeated indentation”, J. Appl. Phys. Vol. 82, 4823 (1997).
11.W. Yan, and K. Komvopoulos, “Three-dimensional molecular dynamics analysis of atomic-scale indentation”, Transaction of the ASME J. TRIBOL. Vol. 120, 358(1998).
12.P. Walsh, R. K. Kalia, A. Nakano, and P.Vashishta, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study”, Appl. Phys. Lett. Vol. 77, 4332(2000).
13.P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, and P.Vashishta,“Nanoindentation of silicon nitride: a multimillion-atom moleculardynamics study”, Appl. Phys. Lett. Vol. 82, 118(2003).
14.A. GanNepalli, and S. K. Mallapragada, “Molecular dynamicsstudies of plastic deformation during silicon nanoindentation”,Nanotechnology Vol. 12, 250(2001).
15.Hualiang Yu, James B Adams and Louis G Hector Jr, “ Molecular Dynamics Simulation of High-Speed Nanoindentation, ” Modelling Simul. Master.Sci. Eng. 10,319-329 (2002)
16.Q.C. Hsu , C.D. Wu , T.H. Fang “ Studies on nanoimprint process parameters of copper by molecular dynamics analysis ” Computational Materials Science 34 ,314–322 (2005).
17.Chih-Wei Hsieh and Cheng-Kuo Sung“Atomic-Scale Friction in Direct Imprinting Process: Molecular Dynamics Simulation” Japanese Journal of Applied Physics,Vol. 46, No.9B,pp. 6387–6390(2007).
18.Ming-Chieh Cheng, Cheng-Kuo Sung, W.H. Wang“The effects of thin-film thickness on the formaton ofmetallic patterns by direct nanoimprint” Journal of Materials Processing Technology 191,326–330(2007).
19.J.E. LenNard-Jonse, “On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc.Roy.Soc.(Lond.), Vol.106A, 441(1924).
20.L.A. Girifalco and V.G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys.ReV.,Vol.114, No.3, pp.687-690(1959).
21.Murray S. Daw, and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phy.ReV. Lett., Vol.50, No.17, pp.1285-1288(1983).
22.Murray S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and OtherDefectsin Metals,” Phy. ReV. B., Vol.29, No.12,pp.6443-6453(1984).
23.C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Englewood Cliffs, NJ,(1971).
24.J. M. Haile, “Molecular Dynamics Simulation,John Wiley and Sons,” New York, (1992).
25.J. D. Kim and C. H. Moon, “A study on microcutting for the configuration of tools using molecular dynamics,” Journal of Materials Processing Technology, Vol.59, pp.309-314(1996).
26.鄭宇哲,”分子動力學模擬單晶銅材的奈米尺寸切削行為”,國立台灣科技大學碩士論文,2008。
27.R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phy. ReV. B., Vol.37, No.8, pp.3924-3931(1988).
28.R. A. Johnson, “Alloy Models with the Embedded-Atom Method,” Phy. ReV. B., Vol.39, No.17, pp.12554-12559(1989).
29.Cynthia L. Kelchner, S. J. Plimpton and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phy.ReV. B., Vol.58, No.17, pp.11085-11088(1998).
30.Giancoli, D. C., Physics for scientists & engineers with modernphysics(3rd edn), Prentice Hall, New Jersey, pp.466-469(2000).

無法下載圖示 全文公開日期 2013/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2013/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE