簡易檢索 / 詳目顯示

研究生: 邱奕翔
I-Hsiang Chiu
論文名稱: 改進有機太陽能電池元件之結構以提升其壽命之研究
Improving the Life Time of Organic Solar Cell by the Modification of the Device Structures
指導教授: 戴龑
Yian Tai
口試委員: 吳季珍
Jih-Jen Wu
江志強
Jyh-Chiang Jiang
林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 壽命有機太陽能電池氧化鋅自組裝單分子
外文關鍵詞: lifetime, organic solar cell, ZnO, SAM
相關次數: 點閱:225下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為改變有機太陽能電池之結構以增加其元件壽命。研究主題分為兩部分,第一部份:使用含羧基自組裝單分子薄膜修飾氧化銦錫電極,應用於以CuPc為P type 材料的小分子太陽能電池元件(ITO/PEDOT:PSS/CuPc/C60/BCP/Al),其效率及元件壽命皆有顯著的提升。我們藉由含不同羧基數量之自組裝單分子薄膜阻擋酸性水溶液PEDOT:PSS對ITO電極的破壞,以提升太陽能電池之壽命,實驗結果顯示,使用含4個羧基的自組裝單分子薄膜修飾ITO,與未經修飾之ITO元件相比,可以提升元件效率10%,並且使元件的壽命延長200%。第二部分:在反向太陽能電池中使用氧化鋅當作電子傳導層相對於正向太陽能電池(ITO/PEDOT:PSS/P3HT:PCBM/Al)中使用PEDOT:PSS當作電洞傳導層,可避免PEDOT:PSS對ITO電極的破壞,其中的氧化鋅薄膜是利用不同噴霧裂解的條件所製備,而在製程條件250℃ 5min下,可得特性較佳的氧化鋅薄膜,其光電轉換效率為3.12%


    This work focused on increasing the life time of organic solar cell (OSC) by modification of device structure. The study is separated into two parts. In the first part, we modified the ITO electrode of CuPc-based OSC (ITO/CuPc/C60/BCP/Al) by self-assembled monolayers ( SAMs ) with carboxylic acid functional groups. Both the power conversion efficiency (PCE) and the life time of the modified OSC can be improved. We attribute the improvement of the life time of the device to the blocking effect by SAMs which preventing the bottom ITO layer from being etched by PEDOT:PSS. The experimental results shown that the PCE increased 10% relative to the unmodified device, and the lifetime improved 200% by using SAM molecule with four carboxylic group. In the second part, we modify the conventional P3HT-based BHJ OSC (ITO/PEDOT:PSS/P3HT:PCBM/Al) to an inverted type with an thin ZnO layer as electron transporting layer in order to avoid PEDOT:PSS. As a consequent, preventing the etching of ITO by PEDOT:PSS. The ZnO layer was fabricated by spary pyrolsis method, and various spary conditions have been investigated. The results shown that the best quality of ZnO layer can be fabricated under the condition of 200℃ and 5min, wherethe PCE can be achieved to 3.12%

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 名詞縮寫表 XV 第一章 緒論 1 1-1 前言 1 1-2 有機太陽能電池簡介 3 1-3 傳統型高分子有機太陽能電池 7 1-4 有機太陽能電池之壽命 8 1-5 反置型高分子有機太陽能電池 10 1-6 有機與無機材料之介面 13 第二章 相關理論 15 2-1 自組裝單分子層薄膜(Self-assembled monolayer, SAM) 15 2-1-1 自組裝單分子層薄膜簡介 15 2-1-2 自組裝單分子薄膜製作方式 17 2-1-3 自組裝單分子薄膜之應用 17 2-2 太陽能電池工作原理與轉換效率 20 2-2-1 太陽能電池基本原理 20 2-2-2 太陽能電池之參數 23 2-3 太陽光的光譜分析(spectrum irradiance) 29 2-4 氧化鋅(Zinc oxide, ZnO) 31 2-4-1 氧化鋅-晶體結構 31 2-4-2 氧化鋅-機械性質 33 2-4-3 氧化鋅-光學性質 34 2-4-4 氧化鋅薄膜-成長方法 35 2-5 薄膜成長機制 38 第三章 實驗方法與步驟 40 3-1 實驗藥品 40 3-2 實驗儀器 42 3-3 有機太陽能電池元件製備 43 3-3-1 基板之圖樣化與清洗程序 43 3-3-2 自組裝單分子層薄膜的製備 44 3-3-3 氧化鋅種晶層製備方法 45 3-3-4 元件製備流程 46 3-4 實驗量測儀器 50 3-5 實驗流程 53 第四章 結果與討論 55 4-1 使用含羧基之自組裝單分子薄膜以提升太陽能電池壽命 55 4-1-1 含羧基之自組裝單分子薄膜成長於ITO基板之分析 55 4-1-2 含羧基之自組裝單分子薄膜成長於ITO基板之AC2分析 65 4-1-3 PEDOT:PSS塗佈於ITO及經過自組裝單分子薄膜修飾ITO上之表面分析 66 4-1-4 PEDOT:PSS塗佈於ITO及經過自組裝單分子薄膜修飾ITO上之AC2分析 70 4-1-5 PEDOT:PSS塗佈於ITO及經過自組裝單分子薄膜修飾ITO上對太陽能電池元件之特性分析 71 4-1-6 PEDOT:PSS塗佈於ITO及經過自組裝單分子薄膜修飾ITO上對太陽能電池元件之壽命分析 75 4-2 不同成長條件之氧化鋅薄膜於太陽能電池元件上之應用 86 4-2-1 以不同時間及不同溫度製備氧化鋅薄膜 86 4-2-1 不同成長條件之氧化鋅薄膜對太陽能電池元件之特性分析 88 4-2-2 氧化鋅薄膜之光學特性分析 90 4-2-3 氧化鋅薄膜之結構分析 93 4-2-4 氧化鋅薄膜之發光特性分析 94 4-2-5 氧化鋅薄膜之表面形貌分析 95 4-2-6 P3HT:PCBM塗佈於氧化鋅薄膜上之表面形貌分析 104 4-2-7 P3HT:PCBM塗佈於氧化鋅薄膜上之結構分析 106 4-2-8 P3HT:PCBM塗佈於氧化鋅薄膜上之光學特性分析 108 第五章 結論與未來展望 111 5-1 結論 111 5-2 未來展望 112

    [1] B. O'Regan, M. Grätzel, Nature 1999, 353, 737.
    [2] Yakimov, S. R. Forrest, Appl. Phys. Lett. 2002, 80, 1667.
    [3] H. Spanggaard, F. C. Krebs, Solar Energy Materials & Solar Cells 2004, 83, 125.
    [4] M. Reyes-Reyes, K. Kim, D. L. Carroll, Appl. Phys. Lett. 2005, 87, 083506.
    [5] K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533.
    [6] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, C. C. Chang, Appl. Phys. Lett. 2002, 80, 2788.
    [7] D.R. Lide, CRC Handbook of Chemistry and Physics, 83rd ed., CRC,Florida, 2002
    [8] M. P. d. Jong, L. J. v. IJzendoorn, M. J. A. d. Voigt, Appl. Phys. Lett. 2000, 77, 2255.
    [9] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Laua, Appl. Phys. Lett. 2002, 80, 2788.
    [10] M. Tavakkoli, R. Ajeian, M. N. Badrabad, S. S. Ardestani, S. M. H. Feiz, K. E. Nasab, Solar Energy Materials & SolarCells 2011, 95, 1964.
    [11] Y. Yang, G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Appl. Phys. Lett. 2006, 88, 253503.
    [12] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Appl. Phys. Lett. 2006, 89, 233517.
    [13] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Appl. Phys. Lett. 2008, 93, 221107.
    [14] S. K. HAu, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K.-Y. Jen, Appl. Phys. Lett. 2008, 92, 253301.
    [15] Y.-I. Lee, J.-H. Youn, M.-S. Ryu, J. Kim, H.-T. Moon, J. Jang, Organic Electronic 2011, 12, 353.
    [16] C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, Solar Energy Materials & Solar Cells 2010, 94, 1618.
    [17] Y.-I. Lee, J.-H. Youn, M.-S. Ryu, J. Kim, H.-T. Moon, J. Jang, Organic Electronics 2001, 12, 353.
    [18] J. Ackermann, C. Videlot, A. E. Kassmi, Thin Solid Films 2002, 403, 157.
    [19] M. Fahlman, W.R.Salaneck, Surface Scienc. 2002, 500, 904.
    [20] A. R. Schlatman, D. W. Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, G. Hadziioannou, Appl. Phys. Lett. 1996, 69, 1764.
    [21] M. L. Wang, Q. L. Song, H. R. Wu, B. F. Ding, X. D. Gao, X. Y. Sun, X. Y. H. X.M. Ding, Organic Electronic 2007, 8, 445.
    [22] J. Collet, O.Tharaud, A.Chapoton, D.Vuillaume, Appl. Phys. Lett. 2000, 76.
    [23] J. Collet, D. Vuillaume, Appl. Phys. Lett. 1998, 73, 2681.
    [24] J. H. Cho, Y. D. P. H. Kim, Appl. Phys. Lett. 2006, 88, 102104.
    [25] R. A. Hatton, S. R. Day, M. A. Chesters, M. R. Willis, Thin Solid Films 2001, 394, 292.
    [26] K. Cho, J. S. Kim, J. H. Park, J. H. Lee, Appl. Phys. Lett. 2007, 91, 12111.
    [27] S. Khodabakhsh, B. M. Sanderson, J. Nelson, T. S. Jones, Adv. Funct. Mater. 2006, 16, 95.
    [28] A. Ulman, Academic Press,San Diego 1991.
    [29] J. S. Kim, J. H. Park, J. H. Lee, Appl. Phys. Lett. 2007, 91, 112111.
    [30] A. Ulman, Chem. Rev. 1996, 96, 1553.
    [31] I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Phys. Rev. Lett. 1996, 76, 1900.
    [32] I. D. Parker, J. Appl. Phys. 1994, 75, 1656.
    [33] S. F. J. Appleyard, M. R. Willis, Optical Materials 1999, 9, 120.
    [34] B. d. Boer, A. Hadipour, M. Magdalena, T. v. Woudenbergh, P. W. M. Blom, Adv. Mater. 2005, 17, 621.
    [35] H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, Physical Review 1996, 54, 14321.
    [36] R. W. Zehner, B. F. Parsons, R. P. Hsung, L. R. Sita, Langmui 1999, 15, 1121.
    [37] 林明獻,太陽電池技術入門(修訂版),全華圖書股份有限公司(2008)
    [38] 許嘉文,高效率有機-無機一直結構太陽能電池之探索,國立海洋大學(2006)
    [39] Jens Cremer, Novel head-to-tail coupled oligo(3-hexylthiophene)derivatives for photovoltaic applications, PhD Thesis(2005)
    [40] Dipl.Ing. Klaus Petritsch, Oraganc Solar Cell Architectures, PhD Thesis(2002)
    [41] 葉楚平,張正華,楊平華,李陵嵐,有機與塑膠太陽能電池,五南圖書出版股份有限公司(2007)
    [42] Jens Cremer, Novel head-to-tail coupled oligo(3-hexylthiophene)derivatives for photovoltaic applications, PhD Thesis(2005)
    [43] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, Macromolecules 2001, 34, 4324.
    [44] R. D. McCullough, United States Patent 6 2000, 166, 172.
    [45] C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier(2006)
    [46] H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Mater. Lett. 2005, 59, 1696.
    [47] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Mater. Sci. Semiconductor Process 1999, 2, 247.
    [48] C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier(2006)
    [49] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, Y. W. Heo, S. J. Pearton, D. P. Norton, M. Inoue, M. Yano, Appl. Phys. Lett. 2005, 86, 203105.
    [50] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 2005, 178, 1864.
    [51] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, E. A. Fitzgerald, Appl. Phys. Lett. 2005, 87, 101908.
    [52] Y. Sun, N. G. Ndifor-Angwafor, D. J. Riley, M. N. R. Arshfold, Chemical Physics Letters 2006, 431, 352.
    [53] A. Umar, B. Karunagaran, E. K. Suh, Y. B. Hahn, Nanotechnology 2006, 17, 4072.
    [54] X. Liu, X. Hu, H. Cao, R. P. H. Chang, J. Appl. Phys. 2004), 95, 3141.
    [55] D. Perednis, J. Gauckler, Journal of electroceramics 2005, 14, 103.
    [56] M.Ohring, The Materials Science of Thin Film, Academic Press, Londom., (1992.)
    [57] 李道惟,"以噴霧熱解法成長p-type氧化鋅薄膜之研究",國立台北科技大學(2006)
    [58] http://www2.warwick.ac.uk/fac/sci/physics/postgraduate/current/regs/mpags/ex5/strainedlayer/surfgrwth/
    [59] M. P. d. Jong, L. J. v. IJzendoorn, M. J. A. d. Voigt, Appl. Phys. Lett. 2000, 77, 14.
    [60] M. S. Aida, L. Baghriche, N. Zebbar, N. Attaf, Nanoengineering and Nanosystems 2009, 223, 25.
    [61] A. Pokaipisit, M. Horprathum, P. Limsuwan, Kasetsart J. (Nat. Sci.) 2008, 42, 362.
    [62] S. Hwangbo, Y.-J. Lee, K.-S. Hwang, Ceramics International 2008, 34, 1237.
    [63] Z. Wang, H. Zhang, Z. Wang, L. Zhang, J. Yuan, J. Mater. Res. 2003, 18, 151.
    [64] H. Zhang, G. Chen, G. Yang, J. Zhang, X. Lu, Mater Electron 2007, 18, 381.
    [65] T. Y. MA, H. Y. MOON, JOURNAL OF MATERIALS SCIENCE 1998, 9, 435.
    [66] A. Palafox, G. Romero-Paredes, A. Maldonado, R. Asomoza, D. R. Acosta, J. Palacios-Gomez, Solar Energy Materials and Solar Cells 1998, 55, 31.
    [67] T.-B. Hur, Y.-H. Hwang, H.-K. Kimb, Appl. Phys. Lett. 2006, 99, 064308.
    [68] T. A. Chen, X. Wu, R. D. Rieke, J. Am., Chem. Soc. 1995, 117, 233.
    [69] U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, N. S. Sariciftci, Thin Solid Films 2006, 496, 679.
    [70] D. Chirvase, J. Parisi, , J. CHummelen, V. Dyakonov, Nanotechnology 2004, 15, 1317.

    QR CODE