簡易檢索 / 詳目顯示

研究生: 徐廷豪
Ting-Hao Hsu
論文名稱: 以超臨界二氧化碳技術探討不同硬度熱塑性聚氨酯之發泡行為
Foaming Behavior of Thermoplastic Polyurethane with different Hardness by Supercritical CO2
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 楊銘乾
Ming-Chien Yang
蘇至善
Chie-Shaan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 150
中文關鍵詞: 超臨界二氧化碳批次發泡熱塑性聚氨酯硬度添加劑
外文關鍵詞: supercritical carbon dioxide, batch foaming, thermoplastic polyurethane, hardness, additives
相關次數: 點閱:345下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  熱塑性聚氨酯(TPU)主要是由硬鏈段及軟鏈段彼此交互連接所組成。由於其廣泛的硬度分布,使TPU發泡材能應用於許多領域,但因TPU複雜的結晶行為和收縮情形,難以控制不同種類TPU達到最佳之發泡效果。目前很少有文獻在ETPU泡珠製備方面,針對不同硬度TPU的發泡行為作詳細探討。
      本研究採用三種不同硬度(85A、90A、95A)的聚醚系TPU,利用超臨界二氧化碳作為發泡劑,以一步法批次發泡製備泡材,對泡孔結構與發泡溫度和壓力的關係進行廣泛的研究。泡孔尺寸在50μm左右,膨脹率達6倍以上,收縮率10%左右。
      首先以85A-TPU的軟化點作為參考溫度,在不同壓力(1100-2000 psi)下含浸,結果發現以Psat = 1100 psi的條件最符合用來製備泡珠(較佳的穩定膨脹比及較低的收縮率),混煉會顯著改變泡孔型態,泡孔密度增加了近百倍。
      因此在Psat = 1100 psi下,探討含浸溫度分別對三種不同硬度TPU泡孔型態之影響。另外透過熱分析及物性分析發現,相分離的趨勢會隨著硬度提高越來越明顯,使硬段的晶體堆疊,有更難以發泡的趨勢,其中尤以95A-PR的發泡效果下降最多。
    接著我們嘗試以三種不同功能之添加劑-成核劑(talc),擴鏈劑(ADR),抗縮劑(ABS),各別對發泡效果較佳的85A及90A-TPU之泡材進行分析及改善。結果發現,對硬度較低的85A-TPU,talc對發泡效果的改善較為顯著,原因可能與硬段含量及排列有關。
      本實驗成功分析不同硬度之聚醚系TPU因混煉造成的發泡行為,並篩選出適合用於製備TPU泡珠的硬度種類及發泡條件。


    Thermoplastic polyurethane (TPU) is mainly composed of different hard segments and soft segments, such a wide range of hardness, TPU foams are suitable for many applications. At the moment, very few studies have investigated the foaming behavior of different hardness TPU in expanded thermoplastic polyurethane (ETPU) bead foam manufacturing.
      In this study, polyether TPUs (85A, 90A, and 95A) with different hardness were foamed through one-step batch foaming using super critical CO2 as the blowing agent. The cell size, expansion ratio, cell density, and shrinkage ratio versus foaming temperature and foaming pressure were studied intensively.
      First, the softening temperature of 85A-TPU was applied as the reference temperature and the sample was saturated at various pressures from 2000 psi to 1100 psi. When the saturation pressure reduced to 1100 psi, the foam shrinkage phenomena was significantly alleviated and the highest expansion ratio was obtained. After compounding, the cell density was increased by almost two orders of magnitude.
      Therefore, at Psat = 1100 psi, the influence of saturated temperature on the three different hardness of TPU’s cell morphology was investigated. In addition, through thermal analysis and physical property analysis, it was found that the phase separation became more obvious with increasing hardness. The crystallization of hardsegments made foaming more difficult.
    In the second part of this study, three different functional additives - nucleating agent (talc), chain extender (ADR) and anti-shrinkage agent (ABS) were added to improve the cell structure of 85A and 90A-TPU. It was found that the improvement of foaming effect of additives was more significant for the low hardness TPU (85A-TPU), which may be related to arrangement of hard segments. In summary, we can choose optimum foaming conditions and hardness to prepare ETPU bead foam.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 第二章 文獻回顧 4 2.1 熱塑性聚氨酯 4 2.1.1 TPU的結構與反應機制 5 2.1.2 TPU微相分離 6 2.1.3 TPU的分類 7 2.2 高分子發泡材料 9 2.2.1 發泡劑種類 10 2.2.2 發泡機制 13 2.3 物理發泡製程 25 2.3.1批次發泡 25 2.3.2 泡珠材料 27 2.4 添加劑 31 2.4.1 擴鏈劑-ADR 32 2.4.2 成核劑-滑石粉 33 2.4.3 抗縮劑-ABS 33 第三章 實驗方法 36 3.1實驗藥品 36 3.2實驗儀器 38 3.3實驗步驟 41 3.3.1 實驗流程圖 41 3.3.2 混煉不同硬度之TPU 42 3.3.3 混煉TPU與不同比例添加劑 42 3.3.4 射出啞鈴型試片(拉伸試驗) 42 3.3.5 熱壓成型(流變試驗) 43 3.3.6 一步法批次發泡 43 3.4測量方法 44 3.4.1 熔融指數分析儀(Melt Flow Index) 44 3.4.2 熱示差掃描量熱儀(DSC) 45 3.4.3 調製式動態熱機械分析儀 (TMA) 45 3.4.4 超效能高分子層析系統(APC) 46 3.4.5 機械性質量測-拉伸試驗 47 3.4.6 流變學實驗 48 3.4.7 硬度量測 48 3.4.8 掃描式電子顯微鏡(SEM) 49 3.4.9 泡材密度(foam density)及膨脹倍率(expansion ratio)量測 49 3.4.10 泡孔尺寸(cell size)計算 50 3.4.11 泡孔密度(cell density)計算 50 3.4.12 泡壁厚度(cell wall thickness)計算 50 第四章 結果與討論 52 4.1 不同硬度熱塑性聚氨酯之材料性質分析 52 4.1.1 混煉數據分析與熔融指數(MFI)量測 52 4.1.2 硬度量測 56 4.1.3 分子量量測 56 4.1.4 流變性質-剪切黏度分析 57 4.1.5 拉伸試驗 58 4.1.6 熱塑性聚氨酯之熱分析 59 4.2 不同含浸壓力及溫度對泡材之影響 67 4.2.1不同含浸壓力對泡材之影響 68 4.2.2 不同含浸溫度對泡材之影響 72 4.3 不同硬度熱塑性聚氨酯之發泡行為 78 4.3.1 混煉加工對熱塑性聚氨酯發泡材之影響 78 4.3.2 不同硬度熱塑性聚氨酯泡材膨脹分析 82 4.3.3不同硬度熱塑性聚氨酯之泡孔分析 84 4.4 泡材收縮與回膨探討 88 4.4.1 不同含浸壓力對泡材收縮之影響 89 4.4.2 混煉對泡材收縮之影響 90 4.4.3 硬度對泡材收縮之影響 91 4.5 添加劑對不同硬度熱塑性聚氨酯之影響 93 4.5.1 添加劑/熱塑性聚氨酯之物性分析 94 4.5.2添加劑對熱塑性聚氨酯泡材之影響 95 4.5.3添加劑對不同硬度熱塑性聚氨酯泡材之影響 101 第五章 結論 105 參考文獻 106 附錄A 85A-AR不同含浸壓力的發泡情形(Tsat=150 °C) 118 附錄B 85A-AR不同含浸溫度的發泡情形(Psat = 2000 psi) 120 附錄C 添加劑/85A及90A-TPU剪切黏度分析 122 附錄D 添加劑/90A-TPU之材料分析 124 附錄E 擴鏈劑(1 wt% ADR)/90A-TPU發泡情形 125 附錄F 抗縮劑(5 wt% ABS)/90A-TPU發泡情形 126 附錄G 各硬度TPU材料分析及泡材分析總表 128

    1. Anderson JR, Okamoto KT and Blizard KG. Polymer foam processing with low blowing agent levels, WO2001089794A1.
    2. Lee ST. Introduction, polymeric foams, mechanisms, and materials. In: Lee ST and Ramesh, editor. Polymeric Foams. Boca Raton: CRC press, 2004. p. 15-29.
    3. Eaves D. Chapter 1, Foam fundamentals. In: Eaves D, editor. Handbook of polymer foams. UK: Rapra Technology, 2004; p. 1-3.
    4. Jia S, Qu J, Wu C, Liu W, Chen R, Zhai S, Huang Z and Chen F. Novel dynamic elongational flow procedure for reinforcing strong, tough, thermally stable polypropylene/thermoplastic polyurethane blends. Langmuir, 2013; 29(44): 13509-13517.
    5. Cooper SL and Tobolsky AV. Properties of linear elastomeric polyurethanes. Journal of Applied Polymer Science, 1966; 10(12): 1837-1844.
    6. Ghariniyat P and Leung SN. Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Composites part B: Engineering, 2018; 143: 9-18.
    7. Wang G, Wan G, Chai J, Li B, Zhao G, Mu Y and Park CB, Structure-tunable thermoplastic polyurethane foams fabricated by supercritical carbon dioxide foaming and their compressive mechanical properties. The Journal of Supercritical Fluids, 2019; 149: 127-137.
    8. https://www.marketsandmarkets.com/Market-Reports/thermoplastic-polyurethanes-market-1091.html. accessed date: May 19 2019
    9. https://www.plasticsportal.net/wa/plasticsEU/portal/show/common/content/campaigns/infinergy/english/index.html. accessed date: May 19 2019
    10. Hossieny NJ, Barzegari MR, Nofar M, Mahmood SH, Park CB. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer, 2014; 55(2): 651-662.
    11. Ionescu M. Chapter 1, Introduction. In: Ionescu M, editor. Chemistry and technology of polyols for polyurethanes. UK: Rapra Technology, 2005; p. 1
    12. Szycher MS. Chapter 4, Isocyanate chemistry. In: Szycher MS, editor. Handbook of polyurethanes, 2nd ed. New York: CRC Press, 2006: p. 114-7
    13. https://www.plasticsinsight.com/ resin-intelligence/resin-prices/polyurethane/2018. accessed date: May 24 2019
    14. Kothandaraman H, Venkatarao K, and Thanoo BC. Crosslinking studies of polyether–ester‐based polyurethane systems. Journal of Applied Polymer science, 1990; 39(4): 943-954.
    15. Dusek K, Spirkova M and Havlicek I. Network formation of polyurethanes due to side reactions. Macromolecules, 1990; 23(6): 1774-1781.
    16. Frick A and Rochman A. Characterization of TPU-elastomers by thermal analysis (DSC). Polymer testing, 2004; 23(4): 413-417.
    17. Song H, Qi H, Li N and Zhang X. Tribological behaviour of carbon nanotubes/polyurethane nanocomposite coatings. Micro & Nano letters, 2011; 6, 48-51.
    18. Wang CB and Cooper SL. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules, 1983; 16(5): 775-786.
    19. 呂靖國. 「TPU熱可塑彈性體」高分子工業, 第98期, 2002. p. 38-44.
    20. Ning, N, Yan B, Liu S, Yao Y, Zhang L, Chan TW, Nishi T and Tian M. Improved actuated strain of dielectric elastomer through disruption of hydrogen bonds of thermoplastic polyurethane by adding diaminonaphthalene. Smart Materials and Structures, 2015; 24(3): 032002(2-3)
    21. Miller JA, Lin SB, Hwang KK, Wu KS, Gibson PE and Cooper SL. Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules, 1985; 18(1): 32-44.
    22. Seymour RW, Estes GM, and Cooper SL. Infrared studies of segmented polyurethan elastomers I. hydrogen bonding. Macromolecules, 1970; 3(5): 579-583.
    23. Martin DJ,.Osman AF, Andriani Y, Edwards GA. Thermoplastic polyurethane (TPU)-based polymer nanocomposites. Advances in Polymer Nanocomposites, 2012; 321-350.
    24. Tausif M, Pliakas A, O’Haire T, Goswami P and Russell SJ. Mechanical properties of nonwoven reinforced thermoplastic polyurethane composites. Materials, 2017; 10(6): 618.
    25. Szycher MS. Chapter 3, Structure–property relations in polyurethanes. In: Szycher MS, editor. Handbook of polyurethanes, 2nd ed. New York: CRC Press, 2006: p.53-54
    26. He Y, Xie D and Zhang X. The structure, microphase-separated morphology, and property of polyurethanes and polyureas. Journal of Materials Science, 2014. 49(21): 7339-7352.
    27. Joseph J, Patel RM, Wenham A and Smith JR. Biomedical applications of polyurethane materials and coatings. Transactions of the IMF, 2018. 96(3): 121-129.
    28. 聚氨酯彈性體手册, 山西省化工研究所 北京: 化學工業出版社, 2001.
    29. Gaymans RJ. Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Progress in Polymer Science, 2011; 36(6): 713-748.
    30. Jiang J, Fu Y, Zhang Q, Zhan X, Chen F. Novel amphiphilic poly (dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property. Applied Surface Science, 2017; 412: 1-9.
    31. Kim HD, Lee TJ, Huh JH, Lee DJ. Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. Journal of Applied Polymer Science, 1999; 73(3): 345-352.
    32. Camberlin Y and Pascault JP. Phase segregation kinetics in segmented linear polyurethanes: Relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. Journal of Polymer Science, 1984; 22(10): 1835-1844.
    33. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Composites Science and Technology, 2005; 65(15-16): 2344-2363.
    34. Chap 2, Foams and foam nanocomposites in Synthesis and characterization of rigid foam PVC/nanoclay composites. Ph.D. Dissertation by Alian A, Department of Materials Science and Engineering, The university of Wisconsin Milwaukee, 2008. p.11.
    35. Mills NJ. Chapter 1, Introduction to polymer foam microstructure. In: Mills NJ, editor. Polymer foams handbook. Oxford: Butterworth Heinemann, 2007. p. 1-18.
    36. Han CD, Kim YW and Malhotra KD, A study of foam extrusion using a chemical blowing agent, Journal of Applied Polyme Science, 1976; 20(6): 1583-1595.
    37. Stehr J. Chemical blowing agents in the rubber industry. Past–present–and future?. International Polymer Science and Technology, 2016; 43(5): 1-10.
    38. Klempner D, Sendijarevic V and Aseeva RM. Chapter 17, Blowing Agents for Polymer Foams. In: Shutov FA , editor. Handbook of polymeric foams and foam technology. Munich: Hanser Verlag, 2004. p. 375-402
    39. https://unep.ch/ozone/pdf/Montreal-Protocol2000.pdf accessed date: May 24 2019
    40. Lee ST. Chpater 1, Introduction. In: Lee ST , editor. Polymeric foams: innovations in processes, technologies, and products. CRC Press, 2016. p. 3
    41. Loh G, Creazzo J and Robin ML. Further development of FEA-1100: a low GWP foam expansion agent. In: Proceedings of polyurethanes 2010 technical conference. Houston, TX USA, 2010.
    42. Chen L, Rende D, Schadler LS and Ozisik R. Polymer nanocomposite foams. Journal of Materials Chemistry B, 2013; 1(12): 3837-3850.
    43. Eisenbach CD and Nefzger H. Chapter 2, Multiphase macromolecular systems. In: Eisenbach CD and Nefzger H, editor. Contemporary topics in polymer science. New York: Plenium Publ Corp, 1989; 339-361.
    44. Ghasemi I, Farsheh AT and Masoomi Z. Effects of multi‐walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly (vinyl chloride)/(wood flour)/(multi‐walled carbon nanotubes). Journal of Vunyl and Additive Technology, 2012; 18(3): 161-167.
    45. Darr JA and Poliakoff M. New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chemical reviews, 1999; 99(2): 495-542.
    46. Sato Y, Yurugi M, Fujiwara K, Takishima S and Masuoka H. Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid phase Equilibria, 1996; 125(1-2): 129-138.
    47. Cooper AI. Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 2000; 10(2): 207-234.
    48. Park CB, Baldwin DF and Suh NP. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering & Science, 1995; 35(5): 432-440.
    49. Chapter 2, Synthesis of microcellular foams in Morphology and properties of polymer/carbon nanotube nanocomposite foams prepared by supercritical carbon dioxide. MS thesis, by Hossieny N. Department of Industrial Engineering, The Florida state University, 2010. p. 13.
    50. Stevens MP. Chapter 3, Chemical structure and polymer morphology. In: Stevens MP, editor. Polymer chemistry. New York: Oxford university press, 1990. p. 61-70.
    51. Gibbs JW. Scientific Papers of J. Willard Gibbs, Ulan Press, 2012
    52. Colton JS and Suh NP. Nucleation of microcellular foam: theory and practice. Polymer Engineering & Science, 1987; 27(7): 500-503.
    53. Sakrani S, Jie LQ and Wahab Y. The formation of nanoscale clusters–nanofilms/quantum dots predicted using a capillary model of nucleation. Malaysian Journal of Fundamental and Applied Sciences, 2005; 1(1). Article no 3.
    54. Colton JS and Suh NP. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering & Science, 1987; 27(7): 485-492.
    55. Colton JS and Suh NP. The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polymer Engineering & Science, 1987. 27(7): 493-499.
    56. Taqieddin A, Allshouse MR and Alshawabkeh AN. Editors' choice—critical review—mathematical formulations of electrochemically gas-evolving systems. Journal of the Electrochemical Society, 2018; 165(13): E694-E711.
    57. Spitael P, Macosko CW and McClurg RB, Block copolymer micelles for nucleation of microcellular thermoplastic foams. Macromolecules, 2004; 37(18): 6874-6882.
    58. Han JH and Han CD, Bubble nucleation in polymeric liquids. II. Theoretical considerations. Journal of Polymer Science Part B: polymer physics, 1990; 28(5): 743-761.
    59. Frisch KC and Klempner D. Chapter 13, Fluoropolymer foams. In: Frisch KC and Klempner D, editor. Handbook of polymeric foams and foam technology. New York: Hanser, 1991. p. 393-396.
    60. Leung SN, Park CB and Li H. Numerical simulation of polymeric foaming processes using modified nucleation theory. Plastics, Rubber and Composites, 2006; 35(3): 93-100.
    61. Li H, Leung SN, Park CB and Li G.The consequences of approximating the classical nucleation theory in simulation of polymer foaming process. SPE ANTEC, 2005, volume 7: 182-186
    62. Leung SN, Wong A, Park CB and Zong JH. Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2008; 108(6): 3997-4003.
    63. Leung SN. Mechanisms of cell nucleation, growth, and coarsening in plastic foaming: Theory, simulation, and experiment. Ph.D. dissertation, Department of Mechanical and Industrial Engineering, the University of Toronto, 2009. p. 41-48.
    64. Fletcher NH. Size effect in heterogeneous nucleation. The Journal of Chemical Physic, 1958; 29(3): 572-576.
    65. Wilt PW. Nucleation rates and bubble stability in water-carbon dioxide solutions. Journal of Colloid and Interface Science, 1986; 112(2): 530-538.
    66. Cole R. Boiling nucleation. Advances in heat transfer, 1974; 85-166.
    67. Moore GR. Vaporization of superheated drops in liquids. AIChE Journal, 1959; 5(4): 458-466.
    68. Apfel RE. Vapor nucleation at a liquid–liquid interface. The Journal of Chemical Physics, 1971; 54(1): 62-63.
    69. Arora KA, Lesser AJ and McCarthy TJ. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules, 1998; 31(14): 4614-4620.
    70. Leung SN, Park CB, Xu D, Li H and Fenton RG. Computer simulation of bubble-growth phenomena in foaming. Industrial and Engineering Chemistry Research, 2006; 45(23): 7823-7831.
    71. Pop‐Iliev R, Liu F, Liu G and Park CB. Rotational foam molding of polypropylene with control of melt strength. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 2003; 22(4): 280-296.
    72. Naguib HE, Park CB and Reichelt N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004; 91(4): 2661-2668.
    73. Frerich SC. Biopolymer foaming with supercritical CO2—Thermodynamics, foaming behaviour and mechanical characteristics. The Journal of Supercritical Fluids, 2015; 96: 349-358.
    74. Jacobs LJM, Kemmere MF, and Keurentjes JTF. Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chemistry, 2008; 10(7): 731-738.
    75. Kumar V and Weller J. Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. ASME Journal of Engineering for Industry, 1994; 413-420.
    76. Chapter 3, Design and construction of high pressure batch foaming system. in Morphology and properties of polymer/carbon nanotube nanocomposite foams prepared by supercritical carbon dioxide. MS thesis, by Hossieny N. Department of Industrial Engineering, The Florida state University, 2010. p. 29.
    77. Standau T, Zhao C, Castellón SM, Bonten C and Altstädt V. Chemical modification and foam processing of polylactide (PLA). Polymers, 2019; 11(2): 306.
    78. Costeux S. CO2‐blown nanocellular foams. Journal of Applied Polymer Science, 2014; 131(23): 41293
    79. Urbanczyk L, Calberg C, Detrembleur C, Jérôme C and Alexandre M. Batch foaming of SAN/clay nanocomposites with scCO2: a very tunable way of controlling the cellular morphology. Polymer, 2010; 51(15): 3520-3531.
    80. Okolieocha C, Raps D, Subramaniam K and Altstädt V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions–A review. European Polymer Journal, 2015; 73: 500-519.
    81. Guo Y, Hossieny N, Chu RK, Park CB and Zhou N. Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. European Polymer Journal, 2013; 214: 180-188.
    82. Nikfarjam N, Hemmati M, Deng Y, Qazvini NT. Water expandable polystyrene containing cellulose nanofibrils: expansion behavior and morphology. Chemical Engineering Science, 2016; 156: 56-63.
    83. Nofar M, Ameli A and Park CB. A novel technology to manufacture biodegradable polylactide bead foam products. Materials & Design, 2015; 83: 413-421.
    84. Raps D, Hossieny N, Park CB and Altstädt V, Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015; 56: 5-19.
    85. Chapter 1, Expandable polystyrene halogenfreie in Flammschutzmittelmischungen für polystyrol-schäume. Ph.D. dissertation, by Wagner J. The university of Heidelberg, 2012. p. 5-9
    86. Britton R. Chapter 2, Developments in making or processing EPS beads. In: Britton R, editor. Update on Mouldable Particle Foam Technology. ISmithers, 2009. p. 36-39.
    87. Scheirs J and Priddy D. Chapter 9, Particle foam based on expandable polystyrene. In: Klodt RD and Gougeon B, editor. Modern styrenic polymers: polystyrenes and styrenic copolymers, Vol. 6. John Wiley & Sons, 2003. p. 166-8.
    88. Chapter 2, Expandable polystyrene bead foam in Novel manufacturing processes for polymer bead foams. Ph.D. dissertation, by Lee EK. Department of Mechanical and Industrial Engineering, the University of Toronto, 2010. p.31-2
    89. Doroudiani S, Park CB, Kortschot MT, Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polymer Engineering & Science, 1996; 36(21): 2645-2662.
    90. Eyerer P, Hirth and Elsner. Chapter 4, Processing of plastics into components. In: Eyerer P, editor. Polymer engineering. Springer Science & Business Media, 2008. p. 291-294
    91. Zhao D, Wang G and Wang M. Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. Journal of Applied Polymer Science, 2018; 135(25): 46327.
    92. 越田展允, 西島浩氣 and 及川政春. Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article. WO2016194737A1.
    93. 及川政春, 越田展允and林達也. Thermoplastic polyurethane foamed particles and method for manufacturing thermoplastic polyurethane foamed particle molded article, WO2017169116A1.
    94. 林達也, 越田展允 and 及川政春, TPU發泡粒子和TPU發泡粒子成形體, WO2017170372A1
    95. 林達也, 越田展允 and 及川政春. 熱塑性聚氨酯發泡粒子之製造方法, TW201815922A.
    96. 越田展允, 林達也 and 及川政春. Thermoplastic polyurethane foaming particle and thermoplastic polyurethane foaming particle molded body, JP2018044042A.
    97. Yang C, Wang M, Xing Z, Zhao Q, Wang M and Wu G. A new promising nucleating agent for polymer foaming: effects of hollow molecular-sieve particles on polypropylene supercritical CO2 microcellular foaming. RSC Advances, 2018; 8(36): 20061-20067.
    98. Markarian J. Foaming agents reduce weight and save energy costs. Plastics, Additives and Compounding, 2009; 11(1): 28-30.
    99. Ojijo V and Ray SS. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer, 2015; 80: 1-17.
    100. Kharbas HA, Ellingham T, Manitiu M, Scholz G and Turngal LS. Effect of a cross-linking agent on the foamability of microcellular injection molded thermoplastic polyurethane. Journal of Cellular Plastics, 2017; 53(4): 407-423.
    101. Kriha O, Hahn H, Desbois P, Warzelhan V, RuckdäschelH, Hofmann M, Exner C and Hingmann R. Expandable pelletized polyamide material, US20110294910A1.
    102. Zhao G, Wang T and Wang Q. Studies on wettability, mechanical and tribological properties of the polyurethane composites filled with talc. Applied Surface Science, 2012; 258(8): 3557-3564.
    103. Lee ST. Shear effects on thermoplastic foam nucleation. Polymer Engineering & Science, 1993; 33(7): 418-422.
    104. Naguib HE, Park CB and Lee PC, effect of talc content on the volume expansion ratio of extruded PP foams. Journal of Cellular Plastics, 2003; 39(6): 499-511.
    105. https://www.chemarc.com/content/article/water-based-coatings---extenders----talc/58913837de2afc2052ddd74e. accessed date: June 3 2019
    106. Drobny JG. Chapter 9, Thermoplastic polyurethane elastomers. In: Drobny JG, editor. Handbook of thermoplastic elastomers, 2nd edition. William Andrew, 2007. p. 236-238.
    107. Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF and Turng LS. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C, 2013; 33(8): 4767-4776.
    108. Rizvi A, Tabatabaei A, Barzegari MR, Mahmood SH and Park CB. In situ fibrillation of CO2-philic polymers: Sustainable route to polymer foams in a continuous process. Polymer, 2013; 54(17): 4645-4652.
    109. Ahmed MF, Li Y, Yao Z, Cao K and Zeng C. TPU/PLA blend foams: Enhanced foamability, structural stability, and implications for shape memory foams. Journal of Applied Polymer Science, 2019; 136(17): 47416.
    110. Demma G, Martuscelli E, Zanetti A and Zorzetto M. Morphology and properties of polyurethane-based blends. Journal of Materials Science, 1983; 18(1): 89-102.
    111. Beydokhti KK, Behravesh AH and Azdast T. An experimental study on mechanical and microstructural properties of microcellular foams of ABS composites, Iranian Polymer Journal, 2006; 15(7): 555-567.
    112. Zhang R, Huang K, Hu S, Liu Q, Zhao X and Liu Y. Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending. Polymer Testing, 2017; 63: 38-46.
    113. https://www.123rf.com/photo_101092442_stock-vector-acrylonitrile-butadiene-styrene-abs-structural-chemical-formula-and-model-vector-illustration.html. accessed date: June 7 2019
    114. https://polymerdatabase.com/polymer%20physics/Melt%20Flow.html. accessed date: June 7 2019
    115. https://pslc.ws/macrog/mpm/analysis/dsc.htm. accessed date: June 7 2019
    116. Tung LH and Runyon JR, Calibration of instrumental spreading for GPC. Journal of Applied Polymer Science, 1969; 13(11): 2397-2409.
    117. http://www.skz.de/en/research/technicalfacilities/pruefverfahren1/spektroskopie1/4873.Gel-permeation-chromatography--GPC.html. accessed date: June 8 2019
    118. https://www.touchstonetesting.com/services/material-testing/mechanical-testing/tensile-testing/. accessed date: June 8 2019
    119. Kumar V and Suh NP. A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990; 30(20): 1323-1329.
    120. 陳宜斈. 以二氧化碳發泡技術製備不同成核劑/熱塑性聚氨酯之微米孔洞發泡研究. 國立臺灣科技大學: 材料科學與工程學研究所, 2017.
    121. Schollenberger CS and Dinbergs K. Thermoplastic polyurethane elastomer molecular weight-property relations. Further studies. Journal of Elastomers and Plastics, 1979; 11(1): 58-91.
    122. Nichetti D, Cossar S and Grizzuti N. Effects of molecular weight and chemical structure on phase transition of thermoplastic polyurethanes. Journal of Rheology, 2005; 49(6): 1361-1376.
    123. Kojio K, Nakashima S and Furukawa M. Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer, 2007; 48(4): 997-1004.
    124. Furukawa M, Mitsui Y, Fukumaru T and Kojio K. Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer, 2005; 46(24): 10817-10822.
    125. Wood LA. Glass transition temperatures of copolymers. Journal of Polymer Science, 1958; 28(117): 319-330.
    126. Lee BS, Chun BC, Chung YC, Sul KI and Cho JW. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules, 2001; 34(18): 6431-6437.
    127. Abouzahr S, Wilkes GL and Ophir Z. Structure-property behaviour of segmented polyether-MDI-butanediol based urethanes: effect of composition ratio. Polymer, 1982; 23(7): 1077-1086.
    128. Camberlin Y, Pascault JP, Letoffé JM and Claudy P. Model hard segments from diphenyl methane diisocyanate and different chain extenders, and corresponding linear block polyurethanes. Journal of Polymer Science: Polymer Chemistry Edition banner, 1982; 20(6): 1445-1456.
    129. Cipriani E, Zanetti M, Brunella V, Luigi C and Bracco P. Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology. Polymer Degradation and Stability, 2012; 97(9): 1794-1800.
    130. 黃思瑤. 不同軟段多元醇組成熱塑性氨酯之泡材熱性質探討. 國立臺灣科技大學: 材料科學與工程學研究所, 2018
    131. Coleman MM, Lee KH, Skrovanek DJ and Painter PC. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules, 1986; 19(8): 2149-2157.
    132. Li R, Lee JH, Wang C and Park CB. Solubility and diffusivity of blowing agents in TPU and the effect on cell nucleation in foaming. In: SPE ANTEC. 2019 Detroit, MI, USA
    133. Yeh SK, Liu YC, Wu WZ, Chang KC and Guo WJ. Thermoplastic polyurethane/clay nanocomposite foam made by batch foaming. Journal of Cellular Plastics, 2013; 49(2): 119-130.
    134. Yeh SK, Liu YC, Chu CC, Chang KC and Wang SF. Mechanical properties of microcellular and nanocellular thermoplastic polyurethane nanocomposite foams created using supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2017; 56(30): 8499-8507.
    135. Chen L, Wang X, Straff R and Blizard K. Shear stress nucleation in microcellular foaming process. Polymer Engineering and Science, 2002; 42(6): 1151-1158.
    136. Gent AN and Tompkins DA. Surface energy effects for small holes or particles in elastomers. Journal of Polymer Science Part A‐2, 1969; 7(9): 1483-1487.
    137. Briscoe BJ and Zakaria S. Gas-induced damage in elastomeric composites. Journal of Materials Science, 1990; 25(6): 3017-3023.
    138. 康庭瑋. 高分子硬度對超臨界二氧化碳發泡技術製備熱塑性聚氨酯微奈米孔洞泡材之影響. 國立台北科技大學: 化學工程與生物科技系化學工程所, 2015.
    139. Yeh SK, Chen YR, Kang TW, Tseng TJ, Peng SP, Chu CC, Rwei SP and Guo WJ. Different approaches for creating nanocellular TPU foams by supercritical CO2 foaming. Journal of Polymer Research, 2018; 25(1): 30.
    140. Doroudiani S, Park CB and Kortschot MT. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polymer Engineering and Science, 1996; 36(21): 2645-2662.
    141. Yang CT, Lee KL and Lee ST, Dimensional stability of LDPE foams: modeling and experiments. Journal of Cellular Plastics, 2002; 38(2): 113-128.
    142. Wang C, Leung SN, Bussmann M, Zhai WT and Park CB. Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Industrial & Engineering Chemistry Research, 2010; 49(24): 12783-12792.
    143. 曾子娟. 以二氧化碳批次發泡不同軟段多元醇組成熱塑性聚氨酯之研究. 國立臺灣科技大學: 材料科學與工程學研究所, 2017.
    144. 劉威翔. 以批次發泡法製備聚醯胺泡珠材料之研究. 國立臺灣科技大學: 材料科學與工程學研究所, 2018.
    145. Wesołowski M. Thermal decomposition of talc: A review. Thermochimica Acta, 1984; 78(1): 395-421.
    146. Czupryński B, Paciorek‐Sadowska J and Liszkowska J. Properties of rigid polyurethane‐polyisocyanurate foams modified with the selected fillers. Journal of Applied Polymer Science, 2010; 115(4): 2460-2469.
    147. Gent AN and Lindley PB. Internal rupture of bonded rubber cylinders in tension. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1959; 249(1257): 195-205.

    無法下載圖示 全文公開日期 2024/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE