簡易檢索 / 詳目顯示

研究生: 顏世杰
Shih-chieh Yen
論文名稱: 金屬氧化物添加劑對PtRu觸媒穩定性與甲醇氧化活性之影響
Effect of Metal Oxide Additives on Durability and Methanol Oxidation Activity of PtRu Alloy Catalysts
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
none
杜景順
none
楊明長
none
蔡大翔
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 213
中文關鍵詞: 直接甲醇燃料電池三元觸媒X光吸收光譜Ru穩定性旋轉環盤電極(RRDE)
外文關鍵詞: DMFC, ternary catalyst, XAS, Ru stability, RRDE
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分兩部分探討金屬氧化物添加劑對陽極觸媒之改良,首先針對三元陽極觸媒合成結構與電性做探討,而後探討其電極觸媒之Ru穩定性,期望能有效增進觸媒之活性及提高觸媒之穩定性。另外,利用旋轉環盤電極(RRDE)探討陽極觸媒之溶解機制。
    研究中利用修飾Watanabe方法製備Pt-Ru雙元金屬及Pt-Ru-M (M:Ti, Nb, Zr)三元金屬奈米觸媒。從X光吸收光譜分析證明本研究成功合成出三元觸媒,且氧化物的氧原子與Ru產生鍵結;另外,發現自製PtRu觸媒比商品化觸媒JM30有較高之合金程度。從XRD及TEM對材料之晶相與形態分析中顯示,自製三元觸媒所得到的晶粒比雙元觸媒小。以旋轉電極評估自製觸媒,結果發現自製之PtRu觸媒對甲醇之催化電流優於JM30商用觸媒,且加入第三元成份後其性能皆有提升,各系統中分別以原子比為Pt:Ru:Ti=2:2:1、Pt:Ru:Nb=3:3:1及Pt:Ru:Zr=4:4:1之三元觸媒有最佳甲醇催化特性。從RRDE實驗中發現商品化觸媒JM30中的Ru原子,在電位掃瞄過程中以Ru4+的狀態溶出。以定電位操作後,依據XANES之吸收係數值與ICP變化量差異比較,結果發現第三元成份能有效防止Ru在高電位操作下之溶出現象,各系統中分別以原子比為Pt:Ru:Ti=2:2:1、Pt:Ru:Nb=3:3:1及Pt:Ru:Zr=2:2:1之三元觸媒效果最佳。因此,透過觸媒之設計與第三元金屬氧化物之摻入,可有效改良直接甲醇燃料電池陽極觸媒之催化效應,並進一步改善其燃料電池操作時因Ru溶解所造成之失效現象。


    In this study, the effect of metal oxide used as a third component in carbon-supported Pt–Ru based ternary catalysts as anode materials for direct methanol fuel cells (DMFCs) is discussed. The investigation is primarily focused on establishing the relationship between the atomic-level structure and the electrochemical activity of the developed catalysts. The stability of Ru in the synthesized catalysts is then demonstrated in order to provide highly active and stable DMFC anode materials.
    The Pt–Ru/C binary and Pt–Ru–M/C (M = Ti, Nb, Zr) ternary anode catalysts are synthesized by using the modified Watanabe method. X-ray absorption spectroscopy (XAS) analyses are utilized to determine the alloying degree of the synthesized catalysts. The XAS results reveal that the alloying degree of home-made Pt–Ru/C catalysts is higher than that of the JM 30 wt% Pt–Ru/C commercial catalysts. The electrochemical performance of the Pt–Ru binary catalysts evaluated by means of rotating disk electrode (RDE) technique is found to be superior to JM 30 Pt–Ru/C catalyst towards the methanol oxidation reaction. In case of Pt–Ru–M/C ternary catalysts, the synthesis process is successful as evidenced from the XAS structural analyses. In addition, both X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicate that the average grain size of the synthesized ternary catalysts is smaller than the home-made Pt–Ru/C binary catalysts. All the developed Pt–Ru–M/C ternary catalysts exhibit superior methanol oxidation activities when compared the Pt–Ru binary catalysts. In case of the Pt–Ru–M/C ternary catalysts, Pt–Ru–Ti/C with a Pt:Ru:Ti ratio of 2:2:1, Pt–Ru–Nb/C with a ratio of 3:3:1 and Pt–Ru–Zr/C with a ratio of 4:4:1 shows the best performance with their corresponding metal oxide of the third component towards methanol electrooxdiation.
    The rotating ring disk electrode (RRDE) technique is employed to study the Ru dissolution under continuous cycling conditions. It is found that a significant amount of Ru is dissolved from the JM 30 wt% Pt–Ru/C commercial catalyst. The RRDE analyses reveal that the dissolved Ru is in the form of Ru4+. The catalyst stability is tested under potentiostatic conditions from both ICP-AES and X-ray absorption edge jump measurements. Both ICP-AES and XAS results indicate that the incorporated metal oxides in the ternary catalysts stabilized Ru against dissolution under potentiostatic conditions. Most promising inhibition capabilities against to Ru dissolution is achieved for the Pt–Ru–M/C ternary catalysts, Pt–Ru–Ti/C with a Pt:Ru:Ti ratio of 2:2:1, Pt–Ru–Nb/C with a ratio of 3:3:1 and Pt–Ru–Zr/C with a ratio of 2:2:1.
    From the present investigations, it is realized that more efficient DMFC anode catalysts can be achieved with the aid of catalyst design and by incorporating metal oxides into the catalysts. Furthermore, the stability of the anode catalysts can be enhanced by stabilizing the Ru against dissolution during DMFC operation.

    摘要 I Abstract III 誌謝 VI 目錄 VII 圖目錄 XII 表目錄 XXIX 第一章 緒論 1 1.1 前言 1 1.2 直接甲醇燃料電池(DMFC) 6 1.2.1 DMFC陽極觸媒 7 1.2.1.1 DMFC陽極觸媒材料 10 1.2.1.2 合金觸媒之製備方式 11 1.2.1.3 甲醇於觸媒電極氧化反應之機制 16 1.2.2 DMFC 電解質 20 1.2.3 DMFC 陰極材料 21 1.3 直接甲醇燃料電池性能衰退之原因 22 1.3.1 陽極觸媒之衰退 24 1.3.2 陰極觸媒之衰退 25 1.3.3 電解質膜之衰退 27 1.3.4 甲醇及氧氣滲透 28 1.3.5 不當之操作環境 29 1.4 直接甲醇燃料電池電極穩定性之改進 29 1.4.1 陽極觸媒之改進 29 1.4.2 陰極觸媒之改進 33 1.5 研究動機與方法 36 第二章 原理 38 2.1 X光吸收光譜原理 38 2.1.1 EXAFS 38 2.1.2 XANES 43 2.1.3 數據分析 44 2.2 XRD分析原理 49 2.3 電化學原理 50 2.3.1 循環伏安法 50 2.3.2 極化曲線 54 2.3.3 旋轉盤電極(Rotating Disc Electrode, RDE) 55 2.3.4 旋轉環盤電極(Rotating Ring-Disc Electrode, RRDE) 58 第三章 實驗設備與方法 61 3.1 實驗藥品及設備 61 3.1.1 實驗藥品 61 3.1.2 儀器設備 62 3.2 實驗方法 63 3.2.1 陽極觸媒製備 63 3.2.1.1 碳黑之前處理 63 3.2.1.2 修飾Watanabe方法合成PtRu/C觸媒 64 3.2.1.3 修飾Watanabe方法合成PtRuTi/C觸媒 65 3.2.1.4 修飾Watanabe方法合成PtRuNb/C觸媒 67 3.2.1.5 修飾Watanabe方法合成PtRuZr/C觸媒 68 3.2.2 材料鑑定與分析 70 3.2.2.1 XRD分析 70 3.2.2.2 TEM 分析 70 3.2.2.3 EDX元素分析 71 3.2.2.4 ICP-AES感應偶合電漿放射光譜儀 71 3.2.2.5電化學特性測試 71 3.2.2.5.1電極片製備 72 3.2.2.5.2 電化學特性量測 72 3.2.3.5.2.1循環伏安 73 3.2.3.5.2.2 CO剝除 73 3.2.3.5.2.3 甲醇氧化極化曲線 74 3.2.2.6 X光吸收光譜(XAS) 74 3.2.2.6.1 EXAFS之曲線適配 74 3.2.2.6.2 以X光吸收光譜分析觸媒結構 75 3.2.3 電極穩定性分析 79 3.2.3.1 陽極觸媒材料溶解機制探討 79 3.2.3.2 Ru穩定性測試 81 第四章 結果 83 4.1陽極金屬觸媒材料之特性分析 83 4.1.1 元素分析 86 4.1.1.1能譜儀分析(EDX) 86 4.1.1.2 XANES之吸收係數 87 4.1.1.3 ICP-AES感應偶合電漿放射光譜 87 4.1.2 材料之晶相與形態分析 88 4.2 觸媒之結構鑑定 94 4.2.1 X光吸收近邊緣結構(XANES) 94 4.2.2延伸X光吸收微細結構(EXAFS) 98 4.3電化學特性量測結果 110 4.3.1 循環伏安 110 4.3.2 CO剝除 115 4.3.3 甲醇氧化極化曲線 117 4.4 電極穩定性分析 122 4.4.1 陽極觸媒材料溶解機制探討 122 4.4.2 Ru穩定性測試 126 4.4.2.1 觸媒之Ru 溶解量分析 126 4.4.2.2 觸媒之結構變化 129 4.4.2.2.1 X光吸收近邊緣結構(XANES) 129 4.4.2.2.2 延伸X光吸收微細結構(EXAFS) 133 第五章 討論 145 5.1 陽極觸媒材料之晶相與形態比較 145 5.2 陽極觸媒材料之結構比較 145 5.3 陽極觸媒材料之電化學活性比較 147 5.4 陽極觸媒材料之穩定性比較 153 5.5 陽極觸媒材料之結構與電化學活性及Ru穩定性之關係 154 第六章 結論 157 附錄 159 參考文獻 205

    1. Carrette, L.; Friedrich, K. A.; Stimming, U., “Fuel Cells - Fundamentals and Applications”, Fuel Cells, 2001, 1, 5.
    2. Sundmacher, K.; Schultz, K.; Zhou, S.; Scott, K.; Ginkel, M.; Gilles, E. D., “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis”, Chem. Eng. Sci., 2001, 56, 333.
    3. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q., “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for
    Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B, 2003, 107, 6292.
    4. Hubert, A.; Gasteiger, N.; Markvoic, N. M.; Philip, N.; Ross, P. N., “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects”, J. Phys. Chem., 1995, 99, 8290.
    5. Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M., “A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst”, J. Phys. Chem B., 2001, 105, 8097.
    6. Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R., “Aspects of the anodic oxidation of methanol”, Catal. Today, 1997, 38, 425.
    7. Freelink, T.; Visscher, W.; van Veen, J. A. R., “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surf. Sci., 1995, 335, 353.
    8. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., Jr.; Cairns, E., “Methanol Electrooxidation on Well-Characterized Pt-Ru Alloys”, J. Phys. Chem., 1993, 97 12020.
    9. Rauhe, B. R.; McLarnon, F. R.; Cairns, E. J., “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate”, J Electrochem. Soc., 1995, 142, 1073.
    10. Brankovic, S. R.; Marinkovic, N. S.; Wang, J. X.; Adžić, R. R., “Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes”, J. Electroanal. Chem., 2002, 532, 57.
    11. Lu, C.; Rice, C.; Masel, R. I.; Babu, P. L.; Waszczuk, P.; Kim, H. S.; Oldfoeld, E.; Wieckowaki, A., “UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts”, J. Phys. Chem. B, 2002, 106, 9581.
    12. Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K. L.; Smotkin, E. S., “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”, J. Phys. Chem. B, 2000, 104, 3518.
    13. Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W., “Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation“, J. Phys. Chem. B, 1999, 103, 6968.
    14. Shukla, A. K.; Raman, R. K.; Choudhury, N. A.; Priolkar, K. R.; Sarode, P. R.; Emura, S.; Kumashiro R., “Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells”, J. Electroanal. Chem., 2004, 563, 181.
    15. Beden, B.; Kadirgan, F.; Lamy, C.; Leger, J. M., “Electrocatalytic oxidation of methanol on platinum-based binary electrodes”, J. Electroanal. Chem., 1981, 127, 75.
    16. Zhong, C. J.; Maye, M. M., Adv. Mater., “Core-Shell Assembled Nanoparticles as Catalysts”, 2001, 13, 1507.
    17. Hamnett, A., “Mechanism and electrocatalysis in the direct methanol fuel cell”, Catal. Today, 1997, 38, 445.
    18. Carrete, L.; Andreas, Friedrich, K. A.; Stimming, U., “Fuel Cells: Principles, Types, Fuels, and Applications”, Chem. Phys. Chem., 2000, 1, 162.
    19. Ledjeff-Hey, K.; Heinzel, A., “Critical issues and future prospects for solid polymer fuel cells”, J. Power Sources, 1996, 61, 125.
    20. Watanabe, M.; Furuuchi, Y.; Motoo, S., “Electrocatalysis by ad-atoms PART XIII. preparation of ad-electrodes within ad-atoms for methanol, formaldehyde and formic acid fuel cells”, J. Electroanal. Chem., 1985, 191, 367.
    21. Watanabe, M.; Uchida, M.; Motoo, S., “Prepatation of high dispersed Pt+Ru alloy clusters and the activity for electrooxidation of methanol”, J. Electroanal. Chem., 1987, 229, 395.
    22. Chu, D.; Gilman, S., J. Electrochem. Soc., “Methanol Elecfro-oxidation on Unsupported Pt-Ru Alloys at Different Temperatures”, 1996, 143, 1685.
    23. Venkataraman, R.; Kunz, H. R.; Feton, J. M., “Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 2003, 150, A278.
    24. Ley, K. L.; Liu, R.; Pu, C., J. Electrochem. Soc., “Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys”, 1997, 144, 1543.
    25. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Science, “Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts”, 1998, 280,1735.
    26. Arico, A. S.; Poltarzewski, Z.; Kim, H., “Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, J. Power Sources, 1995, 55, 159.
    27. Choi, W. C.; Kim, J. D.; Woo, S. I., “Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry”, Catal. Today, 2002, 74, 235.
    28. Antolini, E.; Cardellini, F., “Formation of carbon supported PtRu alloys: an XRD analysis”, J. Alloys and Compounds, 315, 118, 2001.
    29. Takasu, Y.; Fujiwara, T.; Murakami, Y.; Sasaki, K.; Oguri, M.; Asaki, T.; Sugimotoa, W., “Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol ”, J. Electrochem. Soc., 2000, 147 (12), 4421.
    30. Watanabe, M.; Uchida, M.; Motoo, S., “Preparation of Highly Dispersed Pt+Ru Clusters and the Activity for the Electro-oxidation of Methanol” , J. Electrochem. Chem., 1987, 229, 395.
    31. Swathirajan, S.; Mikhail, Youssef M.,“Electrochemical Oxidation of Methanol at Chemically Prepared Platinum-Ruthenium Alloy Electrodes”, J. Electrochem. Soc., 1991, 138, 1321.
    32. Vogel, W.; Britz, P.; Bönnemann, H.; Rothe, J.; Hormes, J., “ Structure and Chemical Composition of Surfactant-Stabilized PtRu Alloy Colloids’’, J. Phys. Chem. B , 1997, 101, 11029-11036.
    33. Hwang, B.J.; Chen, C.-H.; Sarma, L.S.; Chen, J.-M.; Wang, G.-R.; Tang, M.-T.; Liu, D.-G.; Lee, J.-F., “Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy’’, J. Phys. Chem. B, 2006, 110, 6475.
    34. Hamnett, A.; Kennedy, B. J.; Wagner, F. E., J. Catalysis, 1990, 124, 30.
    35. Zhang, X.; Kwong, Y. C., “Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles,Their Characterization and Electrocatalystic Properties’’, Chem. Mater., 2003, 15, 451.
    36. Escudero, M. J.; Hontanon, E.; Schwartz, S., “Development and performance characterisation of new electrocatalysts for PEMFC’’, J. Power Sources, 2002, 106, 206.
    37. Liu, Z.; Jim, Y.-L.; Han, M.; Chen, W.; Leong, M.-G., “Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions’’, J. Mater. Chem. , 2002, 12, 2453–2458.
    38. Liu, Z.; Lee, J.-Y.; Chen, W.; Han, M.; Gan, L.-M., “Physical and Electrochemical Characterizations of Microwave -Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles’’, Langmuir , 2004, 20 , 181-187.
    39. Wang, X.; Hsing, I.-M., “ Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells’’, Electrochimica Acta , 2002, 47 , 2981.
    40. Philippe Serp , J. Mater. Chem., 1980, 11.
    41. Bagotsky, V. S.; Vassilev, Y. B., “Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals”, J. Electroanal. Chem., 1977, 81, 229.
    42. Zhu, Y.; Uchida, H.; Yajima, T.; Watanabe, M., “Attenuated Total Reflection-Fourier Transform Infrared Study of Methanol Oxidation on Sputtered Pt Film Electrode”, Langmuir, 2001, 17, 146.
    43. Goodenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V., “Intraalloy Electron Transfer and Catalyst Performance: A Spectroscopic and Electrochemical Study”, Chem. Mater., 1989, 1, 391.
    44. Yajima, T.; Uchida, H.; Watanabe, M., “In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy”, J. Phys. Chem. B, 2004, 108, 2654.
    45. Shim, J.; Yoo, D. Y.; Lee, J. S., “Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta., 2000, 45, 1943.
    46. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J., “Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction-XRD, XAS, and Electrochemical Studies”, J. Phys. Chem., 1995, 99, 4577.
    47. Brosha, E.; Davey, J.; Garzon, F.; Hamon, C.; Kim, Y. S.; Neergat, M. ; Piela, P.; Pivovar, B.; Purdy, G.; Ramsey, J.; Rowley, J.; Wilson, M. and Zelenay, P., “Direct Methanol Fuel Cells”, Hydrogen, Fuel Cells & Infrastructure Technologies Program 2004 Annual Review, Philadelphia, Pennsylvania, 2004, May.
    48. Liu, J.; Zhou, Z.; Zhao, X.; Xin, Q.; Sun, G.; Yi, B., “Studies on performance degradation of a direct methanol fuel cell(DMFC) in life test”, Phys. Chem. Chem. Phys., 2004, 6, 134.
    49. Piela, P.; Eickes, C.; Brosha, E.; Garzon, F. and Zelenay, P., “Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode”, J. Electrochem. Soc., 2004, 151, A2053.
    50. Sarma, L. S.; Chen, C.-H.; Wang, G.-R.; Hsueh, K.-L.; Huang, C.-P.; Sheu, H.-S.; Liu, D.-G.; Lee, J.-F.; Hwang, B.-J., “Investigations of direct methanol fuel cell (DMFC) fading mechanisms”, J. Power Sources, 2007, 167, 358.
    51. Ferreira, P. J.; la O’, G. J.; Y, S.-H.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A., “Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells”, Journal of The Electrochemical Society, 2005, 152, A2256.
    52. Cao, D.; Bergen, S. H., “ Pt–Ruadatom nanoparticles as anode catalysts for direct methanol fuel cells”, J. Power Sources, 2004, 134, 170.
    53. Shimazaki, Y.; Kobayashi, Y.; Sugimasa, M.; Yamada, S.; Itabashi, T.; Miwa, T.; Konno, M., “Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells”, Journal of Colloid and Interface Science, 2006, 300, 253.
    54. Chen, J.-M.; Sarma, L. S.; Chen, C.-H.; Cheng, M.-Y.; Shih, S.-C.; Wang,G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; Hwang, B.-J., “Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2towards achieving nanostructured materials”, J. Power Sources, 2006, 159, 29.
    55. Tian, J.; Sun, G.; Jiang, L.; Yan, S.; Mao, Q.; Xin, Q., “Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells”, Electrochemistry Communications, 2007, 9, 563.
    56. Zhang, J.; Sasaki, K.; Adzic, R. R., “Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters”, Science, 2007, 315, 220.
    57. Liu, G.; Zhang, H.; Zhai, Y.; Zhang, Y.; Xu, D.; Shao, Z.-G., “Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI”, Electrochemistry Communications, 2007, 9, 135.
    58. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997.
    59. Tran, T. D.; Langer, S. H., “Electrochemical Measurement of Platinum Surface Areas on Particulate Conductive supports”, Anal. Chem., 1993, 65, 1805.
    60. Markovic´, N. M; Grgur, B. N; Lucas, C. A.; Ross, P. N., “Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions”, J. Phys. Chem. B, 1999, 103, 487.
    61. 胡啟章, “電化學原理與方法” , 五南圖書出版公司, 2002.
    62. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., “Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy”, J. Am. Chem. Soc., 2005, 127, 11140.
    63. Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M., “ Pt-Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance ’’, J. Phys. Chem. B , 2002, 106, 760.
    64.Takasu, Y.; Sugimoto, W.; Murakami, Y., Catal. Surf., 2003, 7, 21.

    QR CODE