簡易檢索 / 詳目顯示

研究生: 林承寬
Cheng-Kuan Lin
論文名稱: 錫-鋅合金與金基材之界面反應
Interfacial Reactions in the Sn-Zn/Au Couples
指導教授: 顏怡文
Yee-wen Yen
口試委員: 吳子嘉
Albert T. Wu
陳志銘
C. M. Chen
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 錫-鋅合金界面反應金基材介金屬相
外文關鍵詞: interfacial reaction, Sn-Zn alloy, Au substrate, IMCs
相關次數: 點閱:337下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文對Sn-Zn合金與Au基材於160oC下反應6-800小時的固/固界面反應進行研究,實驗結果可分為兩種界面系統。Sn-1Zn/Au反應偶的界面反應與Au/Sn之界面反應系統相似,Zn含量小於1 wt.%不足以影響界面反應之生成相;Sn-3Zn/Au反應偶大部分與Sn-1Zn/Au之界面形態相似,由於Zn濃度分布不均,在界面會生成少部分Au、Sn與Zn比例為1:1:1的三元相。Zn含量小於3 wt.%界面反應皆屬於Au-Sn之反應系統。Sn-5Zn/Au反應偶有兩種界面形態,因為Zn濃度增加到5 wt.%仍然是有分布不均的問題,隨著時效時間增加,可觀察出此反應偶即為Au-Sn與Au-Zn反應系統之分界。當合金中的Zn濃度增加到7 wt.%以上,界面形態則完全轉變為Au-Zn之反應系統,不會再出現Au-Sn之二元相,這與兩者之生成自由能有密切的關係。
各組反應偶之IMC的厚度隨時間增加而增加,Sn-xZn (x=1, 3, 5 wt.%)三組反應偶之n值約在0.25-0.33之間,反應機制遵守晶界控制;Sn-xZn (x=7, 9, 12, 15 wt.%)四組反應偶呈兩段式的線性成長,在144小時前反應同樣受晶界控制,但在144小時後受Zn濃度的影響,導致反應速率下降;Sn-50Zn/Au反應偶之n值略等於0.5,反應機制為擴散控制,而Sn-90Zn/Au反應偶之n值下降至0.19,反應速率緩慢。另外,Zn含量的增加會造成Au-Sn系統反應速率下降,Au-Zn系統之反應速率上升。最後將反應偶於160oC界面反應路徑的結果描繪在Au-Sn-Zn等溫橫截面圖中,隨著Zn濃度增加,路徑由相圖之左側慢慢移動到相圖之右側,再次說明了Zn的添加,造成界面由Au-Sn反應系統轉變為Au-Zn反應系統,確實對界面反應有很大之影響。


This study investigated the interfacial reaction of Sn-Zn alloy and Au substrate which aging at 160oC for 6-800 hours. There are two kinds of reaction systems in the results of experiment. The interfacial reaction belong to Au-Sn reaction system when the Zn content in the Sn-Zn alloy was less than 3 wt.% and observed a Au-Sn-Zn ternary phase in Sn-3Zn/Au reaction couple. Because of Zn content inhomogeneously and insufficiently in Sn-5Zn/Au couple, it will induce two types of interfacial formation. This reaction couple divided the Au-Sn and Au-Zn reaction system. Increase Zn content more than 7 wt.%, the interfacial formation completely transfer to Au-Zn reaction system. IMC thickness become thicker by increasing of the aging time in all of the reaction couple. The n value of Sn-xZn/Au (x=1, 3, 5 wt.%) couples were between 0.25-0.33, which is grain boundary-controlled. Sn-xZn/Au (x=7, 9, 12, 15 wt.%) couples also have the same condition before 144 hours. But Zn will consumed after 144 hours and reduced the reaction rate. The n value of Sn-50Zn/Au couple was 0.5, which is affected by diffusion-controlled. And the n value of Sn-50Zn/Au couple was 0.19. In conclusion, Zn addition will reduce the reaction rate of Au-Sn system and increase the reaction rate of Au-Zn system. In addition, using the results of interfacial reaction to illustrated the reaction path on Au-Sn-Zn isothermal section. With increasing of the Zn concentration, reaction path will change from left side (Au-Sn side) to right side (Au-Zn side).

摘要 I 英文摘要 II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2-1 電子構裝 3 2-2 無鉛銲料 4 2-3 界面反應與擴散理論 6 2-3.1 界面反應理論 6 2-3.2 擴散理論 7 2-3.3 界面反應路徑 9 2-3.4 Sn與Fe-Ni合金之界面反應路徑 11 2-3.5 Sn-Cu與Au之界面反應路徑 13 2-3.6 Fe-Cr與Ni之界面反應路徑 14 2-4 界面反應相關文獻 16 2-4.1 Sn/Au反應偶 16 2-4.2 Zn/Au反應偶 18 2-4.3 Sn-Zn/Au界面反應 19 第三章 實驗方法 24 3-1 Sn-Zn合金與Au基材製備 24 3-2 反應偶備製 24 3-3 金相處理 26 3-4 界面觀察與分析 27 第四章 結果與討論 29 4-1 Sn-xZn/Au(x=1, 3 wt.%)反應偶 29 4-2 Sn-xZn/Au(x=5 wt.%)反應偶 36 4-3 Sn-xZn/Au(x=7, 9, 12, 15 wt.%)反應偶 40 4-4 Sn-xZn/Au(x=50, 90 wt.%)反應偶 52 4-5 Zn濃度與IMC厚度 58 4-6 Sn-Zn合金與Au基材反應偶之界面反應動力學 61 4-7 介金屬相生成之反應路徑 67 第五章 結論 70 參考文獻 72 附錄 76

[1] “WEEE Regulations”EU-Directive 96/EC (2002).
[2] “RoHS Regulations”EU-Directive 95/EC (2002).
[3] K. Yokomine, N. Shimizu, Y. Miyamoto, Y. Iwata, D. Love and K. Newman, “Development of electronics Ni/Au plated build up flip chip package with highly reliable solder joint”, Eletron. Comp. & Tech. Conf., (2001) 1384-1392.
[4] C. Y. Lee, J. W. Yoon, Y. J. Kim, S. B. Jung, “Interfacial reactions and joint reliability of Sn-9Zn solder on Cu or electrolytic Au/Ni/Cu BGA substrate” , Microelectron. Eng., 82 (2005) 561-568.
[5] 田明波著、顏怡文修訂,“半導體電子元件構裝技術”,五南圖書出版有限公司,台北 (2005)
[6] 陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立圖書有限公司 (2005).
[7] “Electronic Materials Handbook, Vol. 1: Packaging”, ASM International, Mater. Park, Ohio, (1989).
[8] 劉雨雯,“RoHS綠色指令:全球環境規範&無鉛焊接技術”,龍璟文化事業股份有限公司 (2005).
[9] M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Applied physic letters, 63 (1993) 15-17.
[10] R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, “Microelectronics Packaging Handbook: Technology drivers”, Chapman & Hall (1997).
[11] S. Vaynman and M. E. Fine, “Development of flux for lead-free solders contain zinc”, Scr. Mater., 41 (1999) 1269-1271.
[12] F. J. J. van Loo, J.A. van Beek, G. F. Bastin, and R. Metselaar, in ”Diffusion in Solids: Recent Developments”, ed. By M. A. ayananda and G. E. Murch, Metall. Soc., Inc., Warrendale, Pennsylvania (1985).
[13] J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, 2 (1963) 9-117.
[14] J. B. Clark, “Conventions for Plotting the Diffusion Paths in Multiphase Ternary Diffusion Couples on the Isothermal Section of a Ternary Phase Diagram”, Transactions of the Metallurgical Society of Aime, 227 (1963) 1250-1251.
[15] 林世偉,〝錫-鐵-鎳三元系統之相平衡與錫/鐵-鎳合金之界面反應研究〞,國立台灣科技大學 化學工程研究所,碩士論文 (2010).
[16] Y. W. Yen, C. C. Jao, H. M. Hisao, C. Y. Lin and C. P. Lee, “Investigation of the Phase Equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au Quaternary Systems and Interfacial Reactions in Sn-Cu/Au Couples”, J. Electron. Mater. 36-2 (2007) 147-157.
[17] Y. W. Yen, J. W. S and D. P. Huang, “Phase Equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate”, J. Alloys Compd. 457 (2008) 270-278.
[18] H. Okamoto, “Au-Sn (Gold-Tin) ”, Journal of Phase Equilibria and Diffusion, 28 (2007) 490.
[19] S. W. Chen and Y. W. Yen, “Interfacial reaction in the Sn-Ag/Cu couples”, J. Electron. Mater., 30 (2001) 1133-1137.
[20] C. C. Jao, Y. W. Yen, S. H. Zhang, C. Y. Lin and C. P. Lee, “Study of interfacial reactions between Sn-Ag-Cu alloys and Au substrate”, Int. J. Mater. Res., 98 (2007) 496-500.
[21] Y. W. Yen, H. W. Tseng, K. Zeng, S. J. Wang and C. Y. Liu, “Cross- Interaction Between Au/Sn and Cu/Sn Interfacial Reactions”, J. Electorn. Mater. 38-11 (2009) 2257-2263.
[22] H. Okamoto, “Au-Zn (Gold-Zinc) ”, Journal of Phase Equilibria and Diffusion, 27 (2006) 427.
[23] K. S. Kim, K. W. Ryu, C. H. Yu, J. M. Kim, “The formation and growth of intermetallic compounds and shear strength at Sn-Zn solder/Au-Ni-Cu interfaces”, Microelectron. Reliab., 45 (2004) 647-655.
[24] M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K. N. Tu, “Ductile-to-brittle Transition in Sn–Zn Solder Joints Measured by Impact Test”, Scr. Mater., 51 (2004) 641–645.
[25] S. C. Chang, S. C. Lin, and K. C. Hsieh, “Phase reaction in Sn-9Zn solder with Ni/Au surface finish bond-pad at 175oC ageing”, J. Alloys & Compd., 428 (2006) 179-184.
[26] J. W. Yoon, S. B. Jung, “Solder joint reliability evalution of Sn-Zn/Au/Ni/Cu ball-grid-array package during aging”, Material Science and Engineering A, 452-453 (2007) 46-54.
[27] W. Liu, C. Q. Wang Y. H. Tian, Y. R. Chen, “Effect of Zn addition in Sn-rich alloys on interfacial reaction with Au foils” , Transactions of Nonferrous Metals Society of China, 18 (2008) 617-622.
[28] W. K. Liou and Y. W. Yen, “Phase Equilibria of the Au-Sn-Zn Ternary System and Interfacial Reactions in Sn-Zn/Au Couples”, Intermetallics, 17 (2009) 72-78.
[29] W. K. Liou, Y. W. Yen, K. D. Chen, “Interfacial reactions between Sn-9Zn+Cu lead-free solders and the Au substrate”, J. Alloys & Compd., 479 (2009) 225-229.
[30] Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, “ASM Handbook vol. 3 Alloy Phase Diagrams”, edited by H. Baker, Materials Park, Ohio : ASM International (1985).
[31] C. S. His, C. T. Lin, T. C. Chang, M. C. Wang and M. K. Liang, “Interfacial Reactions, Microstructure, and Strength of Sn-8Zn-3Bi and Sn-9Zn-Al Solder on Cu and Au/Ni (P) Pads”, Metall. & Mater. Trans. A, 41A (2010) 275-284.
[32] B. F. Dyson, T. R. Anthony and D. Turnbull, “Interstitial diffusion of copper in tin”, J. Appl. Phy., 38 (1967) 3408.
[33] H. S. Liu, K. Ishida, Z. P. Jin and Y. Du, “Thermodynamic assessment of the Au-Zn binary system”, Intermetallics, 11 (2003) 987-994.
[34] P. Y. Chevalier, “A thermodynamics evaluation of the Au-Sn system”, Thermochimica Acta, 130 (1988) 1-13.

QR CODE