簡易檢索 / 詳目顯示

研究生: 陳柏均
Po-Chun Chen
論文名稱: 具韌性配筋梁構件之震損復原研究
Study on the Rehabilitation of an Earthquake-Damaged RC Beam Member with Ductile Reinforcement
指導教授: 邱建國
Chien‑Kuo Chiu
口試委員: 廖文正
Wen-Cheng Liao
廖文義
Wen-I Liao
蕭輔沛
Fu-Pei Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 658
中文關鍵詞: RC梁構件韌性配筋震損復原折減因子反覆載重
外文關鍵詞: RC beam specimens, ductile reinforcement, seismic damage restoration, reduction factors, repeated loading
相關次數: 點閱:235下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據我國訂定相關的混凝土結構設計規範內容所興建之新造建築物多屬韌性配筋之耐震結構,相較於以往非耐震結構建物,具耐震設計之結構於設計地震力下之損傷應於可修復範圍內,然而如何修復或選擇適當之補修策略於國內鮮少被重視,因此本研究的主要目的是對其進行策略建議。
    本研究共進行8組靜力循環加載試驗以及6組動力加載試驗(做為模擬地震歷時),其中RC梁構件依混凝土設計規範採韌性配筋進行設計,試體之斷面尺寸設計為400 mm\times600 mm,淨長1800 mm試體之直立設計,混凝土設計強度分別為28 MPa與42 MPa。上述試驗規劃除了討論梁構件受反覆載重下裂縫發展及相關基本因子,另考慮試體經震損後(動力加載)在不同構件損傷程度下,採用不同方法修補對構件耐震性能之復原效果。本研究於不同損傷程度之構件分別採用表面處理工法、裂縫低壓灌注工法、環氧樹脂砂漿塗佈工法、植筋工法與鋼板補強工法進行試體復原,最後繼續採用靜力循環加載直至試體破壞,並將從試驗中所獲得構件的力量-位移曲線用於與原先施作之靜力試驗結果進行比較,其中包含裂縫寬度發展比較、構件剪力變形與撓曲變形之關係比較、強度折減因子、勁度折減因子、能量消散折減因子,並根據試驗結果針對梁構件復原後對耐震性能提升效益進行探討。


    Based on the relevant concrete structural design codes established in our country, newly constructed buildings are mostly designed as seismic-resistant structures using ductile reinforcement. Compared to non-seismic structures in the past, structures designed for seismic resistance should sustain damage within repairable limits under design seismic forces. However, little attention has been given to how to repair or select appropriate repair strategies in the domestic context. Therefore, the main objective of this study is to provide strategic recommendations in this regard.
    In this study, a total of 8 sets of static cyclic loading tests and 6 sets of dynamic loading tests (simulating seismic histories) were conducted. The RC beam specimens were designed using ductile reinforcement according to the concrete design codes, with a cross-sectional dimension of 400 mm × 600 mm and a clear span of 1800 mm. The concrete design strengths were set at 28 MPa and 42 MPa, respectively. The experimental plan encompassed discussions on crack development and related fundamental factors under repeated loading of beam specimens. Additionally, considering different degrees of damage to the specimens after seismic loading, different methods of repair were employed to assess the restoration effects on the seismic performance of the components. Surface treatment, low-pressure crack injection, epoxy mortar coating, rebar planting, and steel plate strengthening methods were applied to restore the specimens at different levels of damage. Subsequently, static cyclic loading was continued until specimen failure, and the force-displacement curves obtained from the tests were compared with the results of the initial static tests. This comparison included the evaluation of crack width development, the relationship between shear deformation and flexural deformation of the components, strength reduction factors, stiffness reduction factors, and energy dissipation reduction factors. Based on the test results, the improvement in seismic performance after the restoration of beam components was discussed.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表索引 X 圖索引 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 第二章 文獻回顧 3 2.1 損傷等級分類標準 3 2.1.1 結構整體損傷等級分類標準 3 2.1.2 結構構件損傷等級分類標準 4 2.1.3 損傷等級分類與殘餘裂縫寬度 8 2.2 構件之耐震性能折減係數 \mathrm{\eta} 9 2.3 補強及修復探討 12 2.3.1 鋼筋混凝土結構之修復與補強材料 12 2.3.2 結構元件修復以及補強工法[14] 15 2.4 相關文獻研究 16 第三章 試體設計與試驗規劃 20 3.1 試體設計參數 20 3.2 試體尺寸與配筋形式 21 3.3 試驗配置 24 3.4 試驗加載程序 25 3.4.1 靜力加載試驗 25 3.4.2 動力加載試驗 26 3.4.2.1 建築物資訊與耐震性能 26 3.4.2.2 地震歷時與人工地震轉換 28 3.4.2.3 非線性歷時分析與動力加載位移歷時 29 3.5 試體修復方式 32 3.5.1 表面處理工法 32 3.5.2 裂縫低壓灌注工法 34 3.5.3 環氧樹脂砂漿塗佈工法 36 3.5.4 植筋工法 38 3.5.5 鋼板補強工法 40 3.6 試驗量測 43 3.6.1 外部變形量之量測 43 3.6.2 鋼筋應變量測 45 3.6.3 裂縫寬度量測 47 3.7 材料試驗 49 3.7.1 混凝土抗壓試驗 49 3.7.2 鋼筋及鋼板抗拉試驗 51 3.7.3 修復材相關數據 54 3.7.4 現地拉拔試驗 55 第四章 試驗過程與結果 56 4.1 NSC試驗過程與裂縫發展 57 4.2 HSC試驗過程與裂縫發展 64 4.3 NSC II(II-R)試驗過程與裂縫發展 71 4.3.1 NSC II試驗相關數據 71 4.3.2 NSC II修復過程 76 4.3.3 NSC II-R試驗相關數據 81 4.4 HSC II(II-R)試驗過程與裂縫發展 88 4.4.1 HSC II試驗相關數據 88 4.4.2 HSC II修復過程 94 4.4.3 HSC II-R試驗相關數據 99 4.5 NSC III(III-R)試驗過程與裂縫發展 106 4.5.1 NSC III試驗相關數據 106 4.5.2 NSC III修復過程 112 4.5.3 NSC III-R試驗相關數據 117 4.6 HSC III(III-R)試驗過程與裂縫發展 124 4.6.1 HSC III試驗相關數據 124 4.6.2 HSC III修復過程 130 4.6.3 HSC III-R試驗相關數據 135 4.7 NSC IV(IV-R)試驗過程與裂縫發展 142 4.7.1 NSC IV試驗相關數據 142 4.7.2 NSC IV修復過程 148 4.7.3 NSC IV-R試驗相關數據 159 4.8 HSC IV(IV-R)試驗過程與裂縫發展 166 4.8.1 HSC IV試驗相關數據 166 4.8.2 HSC IV修復過程 172 4.8.3 HSC IV-R試驗相關數據 183 4.9 試驗結果探討 190 第五章 試驗結果之分析與討論 192 5.1 損傷等級分類 192 5.2 變形量之發展 193 5.2.1 撓曲及剪力變形量之計算 193 5.2.2 撓曲及剪力變形量之貢獻 194 5.3 裂縫寬度與變形之關係 202 5.3.1 撓曲裂縫比值及剪力裂縫比值之發展 202 5.3.2 撓曲裂縫及剪力裂縫損傷評估建議式 210 5.3.3 主要剪力裂縫之角度 213 5.3.4 撓曲變形角及剪力變形角之計算與預測 217 5.3.6 裂縫寬度與變形量之關係 223 5.3.7 裂縫寬度與力量之關係 226 5.4 耐震性能折減分析 248 5.4.1 強度折減 248 5.4.2 勁度折減 252 5.4.3 能量消散折減 254 5.5 裂縫發展 255 5.6 耐震性能復原效益 265 第六章 結論與建議 271 6.1 結論 271 6.2 建議 275 參考文獻 276 附錄A 應變計量測值 279 附錄B 試驗過程照片 298 附錄C 裂縫寬度 531 附錄D 變形量貢獻比例圖 610 附錄E 側力與位移的公式 631

    [1] 日本建築防災協会,「震災建築物の被災度区分判定基準及び復旧技術指針
    」, 東京,日本,2015年.
    [2] 內政部營建署災害後危險建築物緊急評估表系統,「災害後危險建築物緊急評估作業人員講習會教材」,2010年.
    [3] ACI Committee 318, Building code requirements for structural concrete and commentary (ACI 318R-19), American Concrete Institute, Farmington Hills, MI, 2019.
    [4] AIJ, Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Architectural Institute of Japan, 1999, Tokyo, Japan. (in Japanese).
    [5] AIJ, Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings (Draft), Architecture Institute of Japan, 2004. Tokyo, Japan.
    [6] JBDPA, Guideline for Post-earthquake Damage Evaluation and Rehabilitation, Japan Building Disaster Prevention Association, 1991 (revised in 2001、2015) Tokyo, Japan. (in Japanese)
    [7] NCREE, Technology handbook for seismic evaluation and retrofit of school buildings (NCREE-13-023), National Center for Research on Earthquake Engineering of Taiwan, 2013, Taipei, Taiwan. (in Chinese)
    [8] NCREE, The Study of the Seismic Assessment Parameters of a New Design Building (NCREE-13-041), National Center for Research on Earthquake Engineering of Taiwan, 2013, Taipei, Taiwan. (in Chinese)
    [9] Ohkubo, M., Current Japanese system on seismic capacity and retrofit techniques for existing reinforced concrete buildings and postearthquake damage inspection and restoration techniques, Technical Rep. SSRP-91/02, 1991, San Diego, CA: Dept. of Applied Mechanics and Engineering Sciences, Univ. of California.
    [10] Sinha R., Goyal A., A national policy of seismic vulnerability assessment of buildings and procedure for rapid visual screening of buildings for potential seismic vulnerability, Technical Rep. Mumbai, 2004, India: Indian Institute of Technology Bombay.
    [11] Anagnostopoulos S., Moretti M., Post-earthquake emergency assessment of building damage, safety and usability—Part 1: Technical issues, Soil Dynamics and Earthquake Engineering, 2008 28 (3): 223–232.
    [12] Shiradhonkar S. R., Seismic damage categorisation and damage index for reinforced concrete buildings, Ph.D. thesis, 2016, Indian Institute of Technology Bombay.
    [13] 「建築物耐震設計規範及解說」,1997,內政部營建署頒布.
    [14] 中華民國地震工程學會,「鋼筋混凝土建築補強及修復參考圖說及解說」,科技圖書,2015年.
    [15] 中國土木水利工程學會,既有混凝土結構物維修及補強技術手冊,科技圖書,台灣,2005.
    [16] 中華民國結構工程技師公會全國聯合會,鋼筋混凝土結構修復補強設計參考手冊,2008.
    [17] 宋欣芳,「低矮型鋼筋混凝土建築物震後耐震性能評估方法之研究」,國立台灣科技大學營建工程學系,博士論文,台北,2021年.
    [18] 簡文郁、連冠華、張毓文、鍾立來、黃世建,「校舍結構易損性與耐震性能標準研究」,中華民國第九屆結構工程研討會,L-0289,高雄,2008年。
    [19] 中國土木水利工程學會、混凝土工程委員會,鋼筋混凝土學(土木406-111),科技圖書,台灣,2022.
    [20] 詹宗穎,「大號鋼筋混凝土握裹裂縫以 Epoxy 修補後之耐震性能評估
    」,朝陽科技大學營建工程學系,碩士論文, 2014年.
    [21] Ahmad S, Elahi A, Barbhuiya S, Farooqi Y. Repair of cracks in simply supported beams using epoxy injection technique. Materials and structures. 2013 Sep;46:1547-59.
    [22] 葉時偉,「RC梁撓曲補強之研究-兩側鋼鈑補強法」,國立中興大學土木工程研究所,碩士論文, 1998年.
    [23] 莊正志,「鋼筋混凝土梁側貼鋼板撓曲補強之反覆載重行為」,國立中興大學土木工程研究所,碩士論文, 2000年.
    [24] 簡顯光,「側貼鋼板補強鋼筋混凝土梁之行為」,國立中興大學土木工程研究所,博士論文, 2005年.
    [25] 陳少謙,「高強度鋼筋混凝土梁之裂縫控制研究」,國立台灣科技大學營建工程學系,碩士論文,2015年.
    [26] Ito Y., Suzuki Y., Maeda M., Residual Seismic Performance Assessment for Damaged RC Building Considering the Reduction of Strength, Deformation and Damping Ratio, Proceeding of JCI Annual Convention (Japan Concrete Institute), 2015, 37(2), 787-792.
    [27] Chiu C.K., Sung H.F., Chi K.N., Hsiao F.P., Experimental Quantification on the Residual Seismic Capacity of Damaged RC Column Members, International Journal of Concrete Structures and Materials, 2019, 13 (1), 17.
    [28] 盧奕羽,「考慮震損之RC填充牆耐震容量研究」,國立台灣科技大學營建工程系,台北,碩士論文,2019年.
    [29] 姚亭君,「界面滑移對震損RC填充牆耐震容量之影響」,國立台灣科技大學營建工程系,台北,碩士論文,2020年.
    [30] NCREE, Taiwan Seismic Assessment and Retrofitting Techniques Manual for Structures (TEASPA V4.0) (NCREE-2020-005), National Center for Research on Earthquake Engineering of Taiwan, 2020, Taipei, Taiwan. (in Chinese)

    無法下載圖示
    全文公開日期 2026/08/15 (校外網路)
    全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE