簡易檢索 / 詳目顯示

研究生: 張立法
Li-Fa Chang
論文名稱: 低矮建築之腐蝕鋼筋混凝土柱耐震行為
Seismic behavior of corroded reinforced concrete columns of low-rise buildings
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 潘誠平
Chan-Ping Pan
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 161
中文關鍵詞: 鋼筋混凝土柱腐蝕縱向主筋橫向箍筋反覆載重塑鉸區
外文關鍵詞: Reinforced concrete columns, corrosion, longitudinal reinforcement, stransverse reinforcement, cyclic loading, plastic hinge range
相關次數: 點閱:320下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究試擬透過柱之反覆載重試驗,以探討低矮建築受鋼筋腐蝕效應對柱構件之耐震行為影響。鋼筋腐蝕之方法採外加電流之電化學腐蝕方式, 腐蝕區域為自柱基礎頂部起算至柱身其上 55 公分範圍內之塑鉸區,本試 驗凡 7 組全尺寸與 4 組縮尺寸之柱試體,全尺寸試體含三組不同之重量損失率分別為 0%、10%、20%,縮尺寸試體則為 10%、20%。全尺寸試體每 組亦皆測試以兩種不同軸力大小分別為 10%、20%並施行反覆載重,另外 縮尺寸試體則作為腐蝕量測之用。

    本研究沿襲先前試驗之韋昀孜腐蝕鋼筋混凝土柱試體,綜合各試驗之結果顯示,所有鋼筋腐蝕率皆較標稱名義值為小,箍筋整體腐蝕率則全數超標,其可解釋為通電過程中電流轉移現象與互制行為。具腐蝕之試體其裂縫較集中於腐蝕區域且裂縫寬度較大;反之,未腐蝕之試體其裂縫則較為分散及均勻。另外未腐蝕試體之極限位移比約可達 11%之多,而腐蝕之 試體則約為 8%,腐蝕亦會造成試體於小位移比即達到最大側力,此造成 結構之降伏提前發生。

    曲率方面,未腐蝕之各試體曲率較為接近,有腐蝕之試體其有較大之極限曲率值且皆位於柱底端附近。剪應變部分,高度腐蝕狀態會導致試體變形易於集中構件某部,則試體柱底有較大之剪應變極值,此外高軸力情況亦會有較大之剪應變值。位移貢獻方面,各試體之位移量主要為撓曲變形所控制,其次為鋼筋滑移影響,最後則為剪切變形。載重試驗之部分, 在施加 10% 軸力情形中試體主筋挫屈行為並不明顯,而 20%軸力作用下 主筋挫屈情形則較為顯著,此將導致試體強度急速下降。


    This research explores the seismic performance of corroded reinforced concrete columns of low-rise buildings through cyclic loading test. An electrochemical method was used to accelerate the corrosion of the reinforced concrete columns at the locations within the plastic hinge range, which ranges from the top of foundation to the 55 cm height of reinforced
    concrete columns. Experimental results together with our previous study were used to examine the seismic behavior of corroded reinforced concrete through cyclic loading test. The specimens with different corrosion levels (i.e., 0%, 10%, 20%) and different axial force load ratios (i.e., 10%, 20%) were investigated. Moreover, additional minimal-size specimens were used for the measurement of corrosion.

    Test results showed that the corrosion rates of longitudinal reinforcing steel bars were lower than the nominal value, while the corrosion rates of transverse stirrups exceeded the nominal value. These results could be attributed to current transfer phenomena and interaction system behavior during energization process. It was observed that the crack width of the corroded specimens were larger than that of the uncorroded specimens. Moreover, it could be found that the cracks were prone to occurr in corroded region. The ultimate drift ratio of the corroded specimens and the uncorroded specimens were 8% and 11%, respectively. The specimen might reach the maximum lateral force at small drift ratio due to corrosion, resulting in faster arrive of its yield load.

    The obtained curvatures of the corroded specimens were larger than that of the uncorroded specimens. Moreover, the corroded specimens owned the maximum curvature value and larger shear strain value at the bottom of the column. The factors contributed to the displacement of the specimens were deflection, steel slipping and shear deformation in sequence. The buckling of the longitudinal bars could be observed obviously under 20% of axial force, which caused the sharp decline in the strength of the specimens.

    目錄 摘要 ABSTRACT 致謝 表 圖目錄 VI 第一章 緒論 1.1 研究動機 1.2 研究背景 1.3 研究目的 第二章 文獻回顧 2.1 腐蝕機理 2.2 鋼筋腐蝕對保護層混凝土抗壓強度與韌性的影響 2.3 裂縫與鋼筋腐蝕之循環關係 2.4 通電腐蝕方法與腐蝕量預測 第三章 腐蝕柱實驗流程 3.1 腐蝕柱試體製作 3.2 柱試體設計方法與檢核 3.3 試體製作程序 3.4 柱試體材料強度試驗 3.5 柱試體通電加速腐蝕 3.6 腐蝕柱試體反覆載重試驗 第四章 試驗結果與分析 4.1 通電腐蝕觀測 4.2 腐蝕鋼筋觀測 4.3 試體腐蝕通電程序 4.4 試體破壞行為與裂縫觀察 4.5 遲滯迴圈 4.6 曲率、剪應變、滑移及位移貢獻 4.7 耐震性能分析 第五章 結論與建議 5.1 試驗與分析結論 5.2 相關建議 參考文獻 附錄 A 柱試體反覆載重試驗裂縫發展照 附錄 B 柱試體鋼筋腐蝕照 附錄 C 柱腐蝕試體表面裂縫照

    參考文獻
    [1] 黃然, 楊仲家, 張正忠 (1995). “腐蝕混凝土梁構件力學行為之研究,” 碩士論文, 國立台灣海洋大學河海工程所, 台灣基隆.
    [2] 中國土木水利工程學會, (2007). 「混凝土工程設計規範與解說(土 木 401-96)」,科技圖書公司.
    [3] 徐勤威 (2007). “利用電化學沉積法探討鋼筋混凝土修補成效之研究,” 碩士論文,國立台灣海洋大學河海工程所, 台灣基隆.
    [4] 何明錦, 邱建國, 歐昱辰, 蔡立倫, 何家維 (2009). “鋼筋腐蝕對於鋼 筋混凝土建築構件耐震性能與生命週期之影響,” 內政部建築研究所協 同研究報告.
    [5] 何明錦, 歐昱辰, 邱建國, 陳君弢, 蔡煒銘, 范鴻達 (2011). “鋼筋腐蝕 對於鋼筋混凝土建築構件耐震性能與生命週期之影響-含腐蝕橫向鋼 筋的梁構件,” 內政部建築研究所協同研究報告.
    [6] 陳厚亨 (2011) “腐蝕橫向鋼筋之鋼筋混凝土梁耐震行為” 碩士論文, 國立台灣科技大學營建工程系.
    [7] 卓奕杉 (2012) “RC 梁鋼筋腐蝕之剪力行為評估與縱向鋼筋腐蝕之耐 震行為” 碩士論文,國立台灣科技大學營建工程系.
    [8] 葉勁宏 (2013) “梁主筋腐蝕位置對桿件韌性行為之影響” 碩士論文, 國立台灣科技大學營建工程系.
    [9] 韋昀孜 (2014) “腐蝕鋼筋混凝土柱耐震行為” 碩士論文,國立台灣科 技大學營建工程系.
    [10] 盧欣蘭 (2015) “反覆載重迴圈數對鋼筋混凝土橋柱耐震行為之影響” 碩士論文,國立台灣科技大學營建工程系.
    [11] Mehta, P.K., and Monteiro, P.J.M. (1993). “Concrete-Structure, Properties, and Materials,” 2nd. ed., Prentice-Hall, New Jersey.
    [12] Molina, F. J., Alonso, C., and Andrade, C. (1993). ‘‘Cover cracking as a function of rebar corrosion. IINumerical model.’’ Materials and Structures, 26, 532–548.
    [13] Belarbi, A., and Hsu, T.T.C. (1995). “Constitutive laws of softened concrete in biaxial tension compression.” ACI Structural Journal, 92(5), pp. 562-573
    [14] FEMA 356 (2000). “Prestandard and commentary for the seismic rehabilitation of buildings.”
    [15] Coronelli, D. and Gambarova, P. (2004). “Structural assessment of corroded reinforced concrete beamsmodeling guidelines.” Journal of Structural Engineering, ASCE, 130(8), 1214-1224.
    [16] Lee, H-S., and Cho, Y-S. (2009). ”Evaluation of mechanical properties of steel reinforcement embedded in concrete speciment as a function of the degree of reinforced corrosion.” International Journal Fract., 157, 81-88

    QR CODE