簡易檢索 / 詳目顯示

研究生: Sharan Roy Choudhury
Sharan Roy Choudhury
論文名稱: 具有橫向圓形開口的 RC 樑的有限元素模擬:研究結構行為和改造策略
Finite Element Simulation of RC Beam with Transverse Circular Opening: Investigating Structural Behavior and Retrofitting Strategies
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 邱建國
Chien-Kuo Chiu
鄭敏元
Min-Yuan Cheng
許士昱
Shi-Yu XU
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 386
中文關鍵詞: 鋼筋混凝土梁橫向開口有限元素模擬改造循環加載
外文關鍵詞: RC Beam, Transverse Opening, FEM Simulation, Retrofitting, Cyclic Loading
相關次數: 點閱:52下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討了帶有圓形開口的鋼筋混凝土(RC)樑的結構複雜性,這是一種典型的建築和工程元素,旨在容納通風、電氣和管道系統等多種服務。 梁中圓形開口的存在會導致應力集中和剪力分佈的改變,這可能會損害結構的完整性。 為了確保結構的安全性和有效性,必須了解這些樑的複雜行為。 本研究以周玠慈[1]和何胤頤[2]的基礎研究為基礎,結合了實驗測試和有限元素法(FEM)模擬。 週玠慈[1]和何胤頤[2]提出的設計指南和估計方法為本論文奠定了基礎,但它們的驗證和進一步探索對於增強其適用性和可靠性至關重要。
    為了滿足驗證和擴展的需求,對週玠慈[1]和何胤頤[2]測試的樣本進行了有限元素模擬,提供了對應力模式的見解並確認了有限元素模型的穩健性。 何胤頤[2]研究樣本的改造增加了額外的研究層面,探討增強橫向圓形開口RC梁結構表現的策略。 同時,也考慮了抗震設計視角,透過案例研究驗證了周玠慈[1]的設計指南。
    本文提出的全面分析和驗證旨在促進結構工程實踐的進步,為標準和地震條件下橫向圓形開口RC樑的設計和改造提供有價值的指導。


    The structural intricacies of reinforced concrete (RC) beams with circular openings—a typical architectural and engineering element meant to accommodate multiple services like ventilation, electrical, and plumbing systems—are explored in this dissertation. The presence of circular openings in beams can cause stress concentrations and modifications to the shear force distribution, which could compromise the structural integrity of the structure. To ensure the safety and effectiveness of structures, it is essential to comprehend the intricate behavior of these beams. Building upon the foundational studies of 周玠慈[1] and 何胤頤[2], this research employs a combination of experimental testing and Finite Element Method (FEM) Simulations. The proposed design guidelines and estimation methods from 周玠慈[1] and 何胤頤[2] lay the groundwork for this thesis, but their validation and further exploration are essential to enhance their applicability and reliability.
    To address this need for validation and extension, FEM Simulation is conducted on specimens tested by 周玠慈[1] and 何胤頤[2], offering insights into stress patterns and confirming the robustness of the FEM model. The retrofitting of specimens from 何胤頤[2] study adds an additional layer of investigation, exploring strategies to enhance the structural performance of RC beams with transverse circular openings. In tandem, the seismic design perspective is considered, validating design guidelines from 周玠慈[1] through a case study.
    The comprehensive analysis and validation presented in this thesis aim to contribute to the advancement of structural engineering practices, offering valuable guidance for the design and retrofitting of RC beams with transverse circular openings in both standard and seismic conditions.

    TABLE OF CONTENT ABSTRACT ii ACKNOWLEDGEMENT iii LIST OF TABLES xi LIST OF FIGURES xv CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objective 4 1.3 Outlines 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 Design Guidelines for RC Beam with transverse web opening: - 6 2.1.1 AIJ-1999[8]: - 6 2.1.2 AIJ-2010[9]:- 9 2.1.3 Modified ACI-method: - 11 2.1.4 Modified Plastic Truss Model 15 2.2 Finite Element Method 17 2.2.1 Nonlinear FEM 18 2.2.2 Elements 18 2.2.2.1 Two-dimensional Body Elements 18 2.2.2.2 Three-dimensional Bodies or Solids 21 2.2.3 Structural interface[13] 22 2.2.4 Crack modelling 24 2.2.4.1 Discrete Cracking 24 2.2.4.2 Smeared cracking 25 2.2.5 Concrete Material model 28 2.2.5.1 Tensile behavior 29 2.2.5.2 Compression behavior 31 2.2.6 Compression behavior with lateral cracking 35 2.2.7 Strength reduction method 36 2.2.8 Poisson’s Ratio Reduction 37 2.2.9 Reinforcement 37 2.2.9.1 Embedded reinforcement 37 2.2.9.2 Bond-slip reinforcement 38 2.2.10 Maximum Element Size 44 2.2.11 Numerical Solution Methods 45 2.2.11.1 Iteration Procedures 45 2.2.11.2 Line Search 50 2.2.11.3 Convergence Criteria 51 2.3 External Strengthening of RC Beams 53 2.3.1 FRP materials 53 2.3.2 Strengthening of RC Beams with FRP 55 2.3.3 Shear Strength Estimation for Externally bonded FRP 56 2.3.3.1 Model Proposed in ACI 440.2R-17[30] 57 2.3.3.2 Modified Hirosawas Equation for RC Beam with Transverse Circular Opening externally strengthened 59 CHAPTER 3 METHODOLOGY 62 3.1 Objective 62 3.2 FEM Analysis Model Setup 63 3.2.1 Finite element modeling of RC beams Tested by 周玠慈[1] 63 3.2.1.1 Geometry 63 3.2.1.2 Material Property 68 3.2.1.3 Mesh Layout 72 3.2.2 Finite element modeling of RC beams tested by 何胤頤[2] 73 3.2.2.1 Geometry 73 3.2.2.2 Material Property 76 3.2.2.3 Mesh Layout 78 3.2.3 Boundary Conditions 79 3.2.4 Loading & Equilibrium 81 3.3 Experimental model setup Retrofitting of RC beam with Transverse circular opening 83 3.3.1 Specimen description 83 3.3.2 Repair and Retrofit Construction Materials 87 3.3.3 Specimen Construction Sequence 87 3.3.3.1 External Retrofitting of specimen 0S1Q_CFRP 89 3.3.3.2 External Retrofitting of specimen 1S1Q_CFRP 90 3.3.3.3 External Retrofitting of specimen 1S0Q_Steel Plate 91 3.3.4 Experimental Setup 92 3.3.5 Data measurement system configuration 94 3.3.5.1 Strain Gauge 94 3.3.5.2 Displacement Gauge 95 3.3.5.3 Optical Measurement System 96 3.3.6 Loading Method 97 3.3.7 Test observation and recording methods 99 CHAPTER:- 4 RESULTS AND DISCUSSIONS 101 4.1 Verification of FEA Results 101 4.1.1 Force-Displacement Relationship 102 4.1.2 Crack width and damage pattern 117 4.1.3 Evaluation of FEM results 125 4.1.3.1 Specimen ND_A 125 4.1.3.2 Specimen 1H0U 126 4.1.3.3 Specimen 1H2U_Q 127 4.1.3.4 Specimen 1H3U_Q 128 4.1.3.5 Specimen 2HZ 129 4.1.3.6 Specimen 2H0U_Q 131 4.1.3.7 Specimen 2H1U_Q 132 4.1.3.8 Specimen 2H0U_QM 133 4.1.3.9 Specimen 2H0U_SQ 135 4.1.3.10 Specimen ND_B 136 4.1.3.11 Specimen 0S0Q 137 4.1.3.12 Specimen 1S0Q 138 4.1.3.13 Specimen 0S1Q 139 4.1.3.14 Specimen 1S1Q 140 4.2 Material Test Results 141 4.2.1 Epoxy Mortar test results 141 4.2.2 Steel Plate Test Results 143 4.2.3 CFRP Plate Test Results 145 4.3 Retrofitted Specimen Test Results 146 4.3.1 0S1Q_CFRP 147 4.3.2 1S1Q_CFRP 150 4.3.3 1S0Q_Steel Plate 154 4.4 Comparison of Specimen Crack Width Development 158 CHAPTER-5 ANALYSIS & CASE-STUDY 161 5.1 FEM Simulation Case Study 1, Specimen Tested by H.A.Soleman[37] 161 5.1.1 Material Property 163 5.1.2 Results of Case Study 164 5.2 FEM Simulation Case Study 2, Specimen tested by Kim, Lee et al.[38] 170 5.2.1 Material Property 172 5.2.2 Results of Case Study 173 5.3 FEM Simulation Case Study, For the seismic design of RC beam with transverse opening 176 5.3.1 Geometry and Loading 177 5.3.2 Material Property 180 5.3.3 Loading & Equilibrium 181 5.3.4 Results of Case Study 182 5.4 FEM Simulation Case Study, For the seismic design of RC beam with Multiple transverse opening 194 5.4.1 Geometry and Loading 194 5.4.2 Results of Case Study 197 5.4.3 Recommended Strength Estimation for Specimen with Multiple Transverse Opening 203 5.5 Comparison of Retrofitted Specimen with Original Specimen 211 5.6 Deformation Analysis of Retrofit Specimen 214 5.6.1 Definition 214 5.6.2 Deformation Analysis Results 217 5.7 Shear Strength Comparison of Retrofitted Specimen with Design Guidelines 220 CHAPTER-6 CONCLUSION 223 6.1 Simulation Conclusion 223 6.2 Retrofit Conclusion 225 6.3 Recommendations For External Reinforcement 225 6.4 Recommendations For RC Beams with Multiple Transverse Opening 227 7 REFERENCES 230 A. APPENDIX- A: - RETROFIT SPECIMEN-TEST PROCESS 234 Specimen – 0S1Q_CFRP 235 Specimen – 1S1Q_CFRP 263 Specimen – 1S0Q_Steel Plate 292 B. APPENDIX- B: - DESIGN OF EXTERNAL REINFORCEMENT 328 C. APPENDIX- C: - RETROFIT MATERIAL PROPERTY 350 D. APPENDIX- D: - CRACK WIDTH MEASURED 360

    1. 周玠慈, Study on the Novel Retrofitting Methods of Reinforced Concrete Beams with Circular Openings[Master's Thesis]. 2022, National Taiwan University of Science and Technology. p. 297.
    2. 何胤頤, Study on the Formulas of Shear Capacity for an RC beam with the Circular Opening[Master's Thesis]. 2023, National Taiwan University of Science and Technology p. 140.
    3. Climent, A.B., M. Ohkubo, and T. Matsuoka, Studies of Shearing Behavior on Reinforced Concrete Beams with An Opening at Beam-End Region. Concrete Engineering Annual Paper Report 1995. 17: p. 631-636.
    4. Somes, N. and W. Corley, Circular openings in webs of continuous beams. Special Publication, 1974. 42: p. 359-398.
    5. Mansur, M. and K.-H. Tan, Concrete beams with openings: analysis and design. Vol. 20. 1999: CRC Press.
    6. ACI, Building code requirements for structural concrete and commentary (ACI 318-19). ACI: Farmington Hills, MI, USA, 2019.
    7. CSSE, Guideline of the reinforcement arrangement for reinforced concrete building sturcures. Chinese Society of Structural Engineers, 2011.
    8. AIJ, Design guidelines for earthquake resistant reinforced concrete buildings based on inelastic displacement concept(AIJ-1999). Architectural Institute of Japan, 1999.
    9. AIJ, Standard for structural Calculation of Reinforced concrete Structures (AIJ-2010). Architectural Institute of Japan, 2010.
    10. Tan, K.-H., M. Mansur, and W. Wei, Design of reinforced concrete beams with circular openings. Structural Journal, 2001. 98(3): p. 407-415.
    11. Mansur, M.A., Effect of openings on the behaviour and strength of R/C beams in shear. Cement and concrete composites, 1998. 20(6): p. 477-486.
    12. Cook, R.D., Concepts and applications of finite element analysis. 2007: John wiley & sons.
    13. BV, D.F., Diana User’s Manual, Release 10.4. 2020.
    14. Rots, J.G. and J. Blaauwendraad, Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating? HERON, 34 (1), 1989, 1989.
    15. Vecchio, F.J. and M.P. Collins, The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 1986. 83(2): p. 219-231.
    16. Selby, R.G., Three-dimensional constitutive relations for reinforced concrete. 1995.
    17. Hordijk, D.A., Local approach to fatigue of concrete. 1993.
    18. Béton, C.E.-I.d., CEB-FIP model code 1990: Design code. 1993: Thomas Telford Publishing.
    19. Fédération internationale du, b.t., FIB model code for concrete structures 2010. 2013, Ernst & Sohn, a Wiley brand Lausanne, Switzerland: Lausanne, Switzerland.
    20. Committee, J.C., Standard Specifications for Concrete Structures-2007 ‘‘Design’’. Japanese Society of Civil Engineering (JSCE), JSCE Guidelines for Concrete, 2007.
    21. Maekawa, K., H. Okamura, and A. Pimanmas, Non-linear mechanics of reinforced concrete. 2003: CRC Press.
    22. JSCE, Standard Specifications for Concrete Structures-2012 ‘‘Design’’, in Japanese Society of Civil Engineering (JSCE), JSCE Guidelines for Concrete. 2012.
    23. Monti, G. and C. Nuti, Nonlinear cyclic behavior of reinforcing bars including buckling. Journal of structural engineering, 1992. 118(12): p. 3268-3284.
    24. Hendriks, M.A.N. and M.A. Roosen, Guidelines for Nonlinear Finite Element Analysis of Concrete Structures. 2019, Rijkswaterstaat Centre for Infrastructure.
    25. Waldron, P. The use of FRP as embedded reinforcement in concrete. in FRP Composites in Civil Engineering-CICE 2004: Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering-CICE 2004, 8-10 December 2004, Adelaide, Australia. 2004. Taylor & Francis.
    26. Gdoutos, E.E., K. Pilakoutas, and C.A. Rodopoulos, Composites in Concrete Construction., in Failure analysis of industrial composite materials. 2000, McGraw-Hill,London. p. 449-497.
    27. Khalifa, A., et al., Contribution of externally bonded FRP to shear capacity of RC flexural members. Journal of composites for construction, 1998. 2(4): p. 195-202.
    28. Monti, G., F. Santinelli, and M.A. Liotta. Mechanics of FRP shear strengthening of RC beams. in Proc. ECCM. 2004.
    29. Zhang, Z. and C.-T.T. Hsu, Shear Strengthening of Reinforced Concrete Beams Using Carbon-Fiber-Reinforced Polymer Laminates. Journal of Composites for Construction, 2005. 9(2): p. 158-169.
    30. ACI, Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI 440.2R-17). ACI: Farmington Hills, MI, USA, 2017.
    31. 渋市, 克., 訓. 杉本, and 安. 増田, CFRP板を用いたRC有孔梁に対する補強工法 「ハリトース工法」の開発. 大林組技術研究所報 大林組技術研究所 編, 2013(77): p. 1-7.
    32. ACI, Guide to Concrete Repair (ACI PRC-546-14). ACI: Farmington Hills, MI, USA, 2014.
    33. Rots, J.G., Computational modeling of concrete fracture. 1988.
    34. Materials., A.A.S.f.T.a., Standard Test Method for Flexural Strength of Hydraulic-Cement Mortarss (C348-21). West Conshohocken: ASTM, 2021.
    35. Materials., A.A.S.f.T.a., Standard Test Methods and Definitions for Mechanical Testing of Steel Products (A370-23). West Conshohocken: ASTM, 2023.
    36. Materials., A.A.S.f.T.a., Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (D3039/D3039M). West Conshohocken: ASTM, 2017.
    37. Soleman, H.A., Cyclic Response of RC Flexural Members with Opening Close to Fixed End[Master's Thesis]. 2023, National Taiwan University of Science and Technology p. 111.
    38. Kim, H.-G., J.-Y. Lee, and K.-H. Kim, Shear Performance of Reinforced Concrete Beams with Small Circular Openings Strengthened Using Rectangular and Octagonal-Shaped Reinforcement. Materials, 2020. 13(24): p. 5804.

    QR CODE