簡易檢索 / 詳目顯示

研究生: 李元瑞
Yuan-Ruel Li
論文名稱: 考慮局部腐蝕影響下之RC填充牆力量位移曲線研究
Study on the Fore-Displacement Relationship Curve of an RC infilled Wall Considering the effect of Localized Corrosion
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 廖文義
邱聰智
鄭敏元
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 257
中文關鍵詞: 鋼筋混凝土牆開孔牆鋼筋腐蝕老劣化強度折減係數勁度折減係數
外文關鍵詞: RC Walls, Oprning-Walls, 、Reinforcement Corrosion, Strength reduction factor, Deterioration Degree
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以在老劣化中相對於震損較少被提及的鹽害腐蝕影響作為討論,腐蝕並不像震損後有明顯損害現象,然而在時間堆疊下會使其成影響構件力學能力的主因。實驗對象則參考早期臺灣常見低矮型建物中混凝土填充牆與開孔牆,因其相對於現今建築受到鹽害時間相對長所受影響也相對明顯。
    實驗沿用姚亭君[1]之無腐蝕牆試體以及張意尚[2]之通電腐蝕方式,以其靜力反覆加載試體之試驗分別作為無腐蝕與腐蝕損失率為 6% 試體作為對照基準。本次實驗設計試體為四座,設計腐蝕量皆為 15%,腐蝕局部位置選擇只影響主壓桿與含有主、次壓桿範圍兩座,另兩座則在中間開孔。同為靜力反覆加載試驗,未開孔兩座將留作後續補強試驗故只施作到強度點過後一個層間位移就停止實驗,而實際腐蝕損失率則取開孔試體其內部腐蝕區域之鋼筋量測實際腐蝕率,並利用目前國震中心建立之輔助程式 TEASPA分析之 RC 側力位移模型為原型,以腐蝕影響之材料性質去修正模擬模型,再利用共九座試體之強度殘存率與勁度衰退比驗證修正後腐蝕模型之合理性。
    由試體結果驗證後,腐蝕後 RC 牆構件在力學行為表現上有明顯的退化,而本研究之模擬腐蝕 RC 牆模型可以保守預估 RC 牆之剩餘強度與勁度衰退程度,開孔牆部分也能保守預估,而由於修正原理建立在材料力學上而非實驗數據回歸,故原先無腐蝕 RC側力位移模型若有更新可將本研究作為附件進行討論。


    This study discusses the impact of salt damage corrosion, which is less mentioned than seismic damage in aging and deterioration. Corrosion is not as obvious as after seismic damage.
    However, under time stacking, it will affect the mechanical capabilities of components. Main reason. The experimental subjects were based on the concrete infill walls and perforated walls that were common in low-rise buildings in early Taiwan. Compared with today's buildings, the impact of salt damage is relatively long and the impact is relatively obvious.
    The experiment followed the corrosion-free wall specimen of Yao Tingjun [1] and the electric corrosion method of Zhang Yishang [2]. The test of repeatedly loading the specimen with static force was used as the non-corrosion specimen and the specimen with a corrosion loss rate of 6% as the control benchmark. There are four test specimens designed for this experiment, and the designed corrosion amount is 15%. The selection of local corrosion locations only affects the main pressure rod and the range containing the main and secondary pressure rods. The other two have holes in the middle. It is also a static repeated loading test.
    The actual corrosion loss rate is measured by taking the steel bars in the internal corrosion area of the open-hole specimen and using the current auxiliary program TEASPA established by the National Seismological Center to analyze the RC lateral force displacement model: Prototype to modify the simulation model based on the material properties affected by corrosion.
    Verified by the test specimen results, the mechanical behavior of the RC wall components after corrosion has been significantly degraded. The simulated corroded RC wall model in this study can conservatively estimate the residual strength and stiffness degradation of the RC wall.
    The open-hole wall part It can also be estimated conservatively. Since the correction principle is based on material mechanics rather than experimental data regression, if the original corrosion-free RC lateral force displacement model is updated, this study can be discussed as an attachment.

    致謝 ..... I 摘要 .... II Abstract ................... III 表目錄 ...................... IX 圖目錄 ..................... XII 第一章緒論 .................1 1.1 研究背景與動機 ................. 1 1.2 研究方法與目的 ................. 2 1.3 研究方法與目的 ................. 3 第二章 文獻回顧 ........ 5 2.1 腐蝕 RC 牆相關試驗 .......... 5 2.1.1 張意尚(2021) ...... 5 2.1.2 Yue Zheng et al. (2021) ............... 7 2.1.3 Duong Dinh Hung (2016) ............ 8 2.2 腐蝕對鋼筋力學影響 ........ 9 2.2.1 金瑩來等人 (2008) ..................... 9 2.2.2 歐昱辰等人 (2016) ................... 10 2.3 腐蝕對於混凝土力學性能影響 ..............11 2.3.1 詹宗翰(2020) .... 11 2.4 腐蝕對初始斷面勁度影響 ...................... 12 2.4.1 蔡宜靜(2018) .... 12 2.4.2 Lu Zhan et al. (2019) ................. 14 2.5 腐蝕裂縫預估腐蝕損失率相關試驗 ...... 15 2.5.1 Feng Wu et al. (2014) ................ 15 2.5.2 Yue Zheng et al. (2022) ............. 16 2.5.3 T. Vidal et al. (2004) .................. 18 第三章 試體設計與製作 .................. 20 3.1 試體設計 ................... 20 3.1.1 牆斷面配筋 ....... 22 3.1.2 柱斷面 ............... 23 3.1.3 上梁斷面 ........... 23 3.1.4 試體基礎與墊高基礎 ............... 25 3.1.5 牆面腐蝕區域 ... 26 3.2 試體製作流程 ........... 27 3.2.1 腐蝕鋼筋前置準備作業 ........... 27 3.2.2 場地整平與放樣 ....................... 31 3.2.3 基礎鋼筋組立 ... 32 3.2.4 邊界柱主筋及部分箍筋 ........... 32 3.2.5 基礎模板與牆板垂直筋組立 ... 32 3.2.6 基礎混凝土澆置 ....................... 33 3.2.7 界柱箍筋與牆體水平筋綁紮 ... 34 3.2.8 開孔牆鋼筋切除及模板安裝 ... 34 3.2.9 上梁鋼筋綁紮及模板組立 ....... 34 3.2.10 上部結構混凝土澆置 ............... 35 3.3 牆試體通電加速腐蝕 ....................... 35 3.3.1 腐蝕區域順序規劃 ................... 35 3.3.2 腐蝕水槽及接電作業 ............... 36 3.3.3 試體腐蝕方法 ... 36 3.3.4 通電腐蝕紀錄 ... 39 3.3.5 腐蝕裂縫繪製與觀測 ............... 39 第四章 試驗佈置與規劃 .................. 42 4.1 試驗構架佈置 ................... 42 4.1.1 試體基礎鎖固 ... 45 4.1.2 傳力鋼梁鎖固與側向支撐系統 ....................... 45 4.1.3 水平方向施力系統 ................... 45 4.1.4 軸力系統 ........... 46 4.1.5 力偶施加 ........... 47 4.1.6 試驗程序 ........... 47 4.1.7 試驗構架佈置組裝 ................... 49 4.2 量測系統 ... 54 4.2.1 外部位移控制計(Temposonics Ⅲ) ..................54 4.2.2 CDP 位移計(CDP Displacement Transducer) ... 54 4.2.3 影量測量系統 ... 55 4.3 試驗流程 ................... .......57 4.3.1 加載流程 ........... 57 4.3.2 試驗觀察與量測 ....................... 57 4.4 鋼筋腐蝕觀測 .................. 60 4.4.1 試體鋼筋取出 ... 60 4.4.2 腐蝕鋼筋量測 ... 63 第五章 試驗結果與觀察 .................. 65 5.1 材料試驗結果 .................. 65 5.1.1 混凝土抗壓試驗 ....................... 66 5.1.2 鋼筋拉拔試驗 ... 69 5.2 試體觀察與結果 .............. 70 5.2.1 軸力變化 ........... 71 5.2.2 試體 C25W15-3T-H 之試驗觀察 ................... 73 5.2.3試體 C25W15-D-H 之試驗觀察 ................... ..87 5.2.4 試體 C25W15-DO-H 之試驗觀察 .................101 5.2.5 試體 C25W15-3TO-H 之試驗觀察 ............... ..114 5.2.6 試體背骨曲線觀察與討論 ......124 5.3 鋼筋真實腐蝕損失率 ..................... 127 第六章 分析與討論 ............. 135 6.1 鋼筋實際腐蝕率對應腐蝕裂縫寬度 ..................... 135 6.2 試體變形量分量之發展 ................. 145 6.2.1 元素曲率法 ..... 146 6.2.2 試體控制確認 .......... 153 6.2.3 滑移量之修正 ........... 154 6.3 腐蝕 RC 剪力牆性能探討 .............. 156 6.3.1 勁度衰退曲線 .......... 156 6.3.2 側向強度變化曲線 ................. 160 6.4 腐蝕 RC 剪力牆三折線模型 .......... 164 6.4.1 側力位移曲線建立 ................. 164 6.4.2 腐蝕軟化係數 ........... 170 6.4.3 開裂點腐蝕折減 ..................... 173 6.4.4 強度點腐蝕折減 ..................... 174 6.4.5 崩塌點腐蝕折減 ..................... 175 6.4.6 腐蝕 RC 剪力牆模型比較 ...... 176 6.5 腐蝕 RC 開口牆三折線模型 .......... 179 6.5.1 側力位移曲線建立 ................. 179 6.5.2 節點力平衡調整 ..................... 183 6.5.3 關鍵桿件位置檢查 ................. 185 6.5.4 彈簧串、並聯模型調整 ......... 185 6.5.5 腐蝕 RC 開孔剪力牆模型比較 ...................... 186 6.6 模型驗證與比較 ..... 187 6.6.1 強度殘存率 ..... 186 6.6.2 勁度衰退比 ..... 218 第七章 結論與建議 227 7.1 結論 .......... 227 7.2 建議 ....... 227 參考文獻 .......... 230 附錄A 各試體夾具與混凝土墊塊滑移量 ....... 234 附錄B 試體牆面、柱子變形量 ....................... 237 附錄C 開口RC填充牆模型計算驗證 .............. 242 附錄D C25W15-3TO-H 腐蝕開口RC填充牆算例 ....................251

    [1]姚亭君 (2020),「界面滑移對於震損RC 填充牆耐震容量之影響」,國立臺灣科技大學營建工程學系,碩士論文,台北
    [2] 張意尚 (2023),「局部區域腐蝕對於RC牆之力學行為影響研究」,國立台灣科技大學營建工程學系,碩士論文,台北
    [3] 邱建國、陳君弢、林昭妤、姚廷穎,「鋼筋混凝土建築結構耐久性能診斷技術手冊研擬」,內政部建築研究所委託研究成果報告,國立台灣科技大學,台北(2019)。
    [4] 鍾立來、邱建國、廖文正、李翼安、楊仲家、翁樸文、沈文成、何郁姍、陳佩汝、蔡宜靜、沈仁宗、胡瑋秀、詹宗翰、黃煥原,「校舍鋼筋混凝土結構考慮耐久性之耐震能力評估技術手冊」,技術報告NCREE-2021-004,國家地震工程研究中心,台北(2021)。
    [5] 詹宗翰 (2019),「考慮鋼筋腐蝕影響之RC 豎向構件耐震性能折減係數」,國立臺灣科技大學營建工程學系,碩士論文,台北
    [6] Zheng, Y., et al. (2022). "Experimental study on the seismic behavior of corroded reinforced concrete walls in an artificial climate corrosion environment." Engineering Structures 252: 113469.
    [7] Duong Dinh Hung(2016),"Effect of Corrosion Steel Reinforcement on the Behavior of Squat Shear Wall",國立台灣科技大學營建工 程系,碩士論文,台北。
    [8] 金瑩來、野口貴文、長井宏憲 (2008),「腐食形態を考慮した腐食鉄筋の力学的性能の評価に関する研究」,日本建築學會構造論文集,第73卷之624 號 181-188。
    [9] 林宜鋒 (2011),「考慮箍筋腐蝕梁構件之剪力行為分析模式」,台灣混凝土工程研討會。
    [10] Yu-Chen Ou 、Yudas Tadeus Teddy Susanto、Hwasung Roh(2016),"Tensile behavior of naturally and artificially corroded steel bars" Construction and Building Materials 103:93-104.
    [11] Weng, P. W., Li, Y. A., Tu, Y. S. and Hwang, S.J., “Prediction of the Lateral LoadDisplacement Curves for Reinforced Concrete Squat Walls Failing inShear,”accepted by Journal of Structural Engineering, ASCE, 2017
    [12] D.Coronelli(2004),"Structural Assessment of Corroded Reinforced Concrete Beams:Modeling Guidelines", Journal of Structural Engineering, ASCE, V.130, No 8, Aug., 2004, pp. 1214-1224
    [13] 松永尚凡、山川哲雄 (1994),「電食試験により腐食した RC 耐力壁の耐震性能に関する実験的研究」,コンクリート工学 年次論文報告集,Vol.16, No 1
    [14] 蔡宜靜 (2018),「RC 建物耐久與耐震性能整合評估系統開發與建置」,國立台灣科技大學營建工程系,碩士論文,台北。
    [15] 日本建築學會(AIJ) (1999),「鉄筋コンクリート造建物の靭性 保証型耐震設計指針・同解説」,丸善株式會社。
    [16] Lu Zhang et al (2019),"Concrete Protective Layer Cracking Caused by NonUniform Corrosion of Reinforcements",Materials:4245
    [17] Wu, F., et al. (2014). "Calculation of corrosion rate for reinforced concrete beamsbased on corrosive crack width." Journal of Zhejiang University SCIENCE A 15(3): 197-207.
    [18] Yuan, Y., et al. (2006). "A comparative study on structural behavior of deteriorated reinforced concrete beam under two different environments."
    China Civil Engineering Journal 39(3): 42-46.
    [19] Alonso, C., et al. (1998). "Factors controlling cracking of concrete affected by 230 reinforcement corrosion." Materials and structures 31(7): 435-441.
    [20] Wu, F., et al. (2014). "Calculation of corrosion rate for reinforced concrete beams based on corrosive crack width." Journal of Zhejiang University SCIENCE A 15(3): 197-207.
    [21] Dai, K. and Y. Yuan (2005). "Experimental study on seismic performance of corroded exterior joints in RC frame." J. China Univ. Mining Technol 1(011).
    [22] Vidal T, Castel A, François R. (2004). "Analyzing crack width to predict corrosion in reinforced concrete. "Cem Concr Res 2004;34:165–74.
    [23] 翁樸文、蔡仁傑、黃世建, 「鋼筋混凝土剪力牆分析模擬技術手冊」,國家地震工程研究中心,台北(2021)。
    [24] Zhang, L. X. B. and Hsu, T. T. C., “Behavior and Analysis of 100 MPa Concrete Membrane Elements”, Journal of Structural Engineering, ASCE, Vol.124, No. 1, pp. 24-34, 1998
    [25] Vecchio, F. J. and Collins, M. P. (1986), "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear", ACI Structural Journal, 83(2), 219-231.
    [26] ASCE/SEI 41-13, “Seismic Evaluation and Retrofit of Existing Buildings (41-13),” American Society of Civil Engineers (ASCE), Reston, VA, 2014, 518 pp.
    [27] 國家地震工程研究中心,邱聰智、鍾立來等人(2020),「臺灣結構耐震評估與補強技術手冊」(TEASPA V4.0),報告編號:NCREE-20-005。
    [28] 蔡仁傑 (2015),「鋼筋混凝土開孔牆之側力位移曲線預測」,國 立台灣大學土木工程學系,碩士論文,台北。
    [29] 涂耀賢 (2005),「低矮型 RC 牆暨構架之側向載重位移曲線預測研究 」,國立台灣科技大學營建工程系,博士論文,台北。
    [30]盧奕羽 (2020),「考慮震損之RC填充牆耐震容量之研究」,國立臺灣科技大學營建工程學系,碩士論文,台北。

    QR CODE