簡易檢索 / 詳目顯示

研究生: 蔡安妮
An-Ni Tsai
論文名稱: 液壓鑄造Sb-ZnSb異質結構暨Sb2S3奈米線 合成與特性分析
Sb-ZnSb Heterostructure and Antimony Tri-sulfide (Sb2S3) Nanowires Synthesis and Characterization by Hydraulic Pressure Injection Method
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 周賢鎧
Shyan-Kay Jou
葉炳宏
Ping-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 102
中文關鍵詞: 奈米線異質結構
外文關鍵詞: Naniwires, Heterostructure
相關次數: 點閱:177下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要分別以3:7的鋅-銻系統與2:3的銻-硫系統探討。第一部份,使用陽極氧化鋁模板的液壓鑄造處理製造異質結構的銻與銻化鋅(ZnSb)高序化奈米線陣列,而將塊材組份配在共晶組份,藉由壓鑄可將材料壓入具有高度有序的奈米陣列的模板裡,此外,控制蝕刻條件,可得的因相分離所產生的異質結構對於蝕刻液的蝕刻速率不同的奈米線,然而使用氧化鋁模板可以控制奈米線的直徑以及可以製造高度有序的奈米陣列。結果得知,奈米線的直徑約 70-100 nm,以及因為在共晶成分下所進行壓鑄也獲得異質結構的奈米線。利用掃描式電子顯微鏡觀察Sb-ZnSb異質結構的奈米線的形態。在藉由X-射線繞射分析和拉曼測量分析微結構。從XRD以及拉曼的結果也得到Sb-ZnSb的異質結構的相,其中異質結構的介面可以藉由高倍率穿透式電子顯微鏡觀察,也得到 Sb-ZnSb 的異質結構。
第二部份,藉由上述的方法製造出硫化銻(Sb2S3),壓鑄方式可獲得高密度且平滑的奈米線,直徑約為70-100 nm,利用掃描式電子顯微鏡觀察Sb2S3的奈米線的形態。在藉由X-射線繞射分析和拉曼測量分析微結構。可以利用X-射線繞射分析和拉曼測量分析。結果得知,多孔的氧化鋁模板對於控制奈米線的直徑扮演重要的角色,藉由液壓鑄造可以成功製造出Sb2S3奈米線。


Sb-system is the mainly subject to discuss, the heterostructure of antimony-zinc antimonides (ZnSb), antimony (III) sulfide (Sb2S3) an dare divided into two parts in this thesis.
The highly ordered array of the heterostructure of antimony-zinc antimonides (ZnSb) nanowires are fabricated by a hydraulic pressure injection processing with anodic aluminum oxide and microstructure is analyzed by templates. We use control the composition of bulks in two phase region, through the die casting to press the material into the highly ordered array of template. Therefore, control etching condition, can get the heterostructured NWs due to the etching rate were different caused the phase separation. However, the highly ordered array of anodic aluminum oxide template can control the diameter of NWs and fabricate the highly ordered array of NWs. The results demonstrate that the diameter antimony-zinc antimonides (ZnSb) heterostructure NWs were 70-100 nm. Therefore, through die-casting under eutectic composition, heterostructure nanowires were obtained. The morphology of antimony-zinc antimonides (ZnSb) heterostructure NWs was observed by SEM. The microstructure of nanowires were characterized by XRD analysis and Raman measurement. From the results of XRD and Raman analysis obtained heterostructure phase of Sb-ZnSb. In addition, the interface of the heterostructure can be observed by TEM. The results demonstrate that heterostructure NWs can be obtained.
Sb2S3 nanowires were fabricated by a vacuum hydraulic pressure injection process using anodic aluminum oxide (AAO) as templates. It will help us to easily get a large quantity and uniform and flat Sb2S3 NWs The diameter of Sb2S3 NWs were about 70-100 nm. The morphology of NWs was observed by SEM, The microstructure of nanowires were characterized by XRD analysis and Raman measurement. The results shown porous anodic aluminum oxide played a significant role for the fabrication of Sb2S3, which controlled the diameter of NWs. Sb2S3 nanowires were successfully fabricated by a hydraulic pressure injection processing.

摘要 致謝 Contents List of Abbreviations and Acronyms List of Figures and Tables Chapter 1 Introduction 1.1 Nanotechnology 1.1.1 Nanostructure 1.1.2 One-Dimensional (1D) Nanostructures 1.2 Growth Mechanisms and Synthesis Method of One Dimensional Nanostructures 1.2.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 1.2.2 Chemical Vapor Deposition (CVD) 1.2.3 Vacuum Hydraulic Pressure Injection Process 1.3 Zinc Antimonides 1.3.1 Structure of Zinc Antimonides 1.4 Properties of ZnSb Material 1.4.1 Optical Property of ZnSb 1.5 Sb Element 1.6 Antimony (III) Sulfide 1.6.1 Structure of Antimony (III) Sulfide 1.7 Heterostructure 1.7.1Phase Separation 1.7.2 Selective Etching 1.7.3 Metallographic Test 1.8 Growth Method of ZnSb Nanowires 1.8.1 Chemical Vapor Deposition Method 1.8.2 Electrochemical Deposition Method Chapter 2 Experimental Procedures 2.1 The Synthesized Method for ZnSb Nanowires 2.1.1 Preparation of Zn0.3Sb0.7 Bulks 2.1.2 Fabrication of Sb-ZnSb Nanowires 2.2 The Synthesized Method for Sb2S3 Nanowires 2.2.1 Preparation of Sb2S3 Bulks 2.2.2 Fabrication of Sb2S3 Nanowires 2.3 The Morphologies and Microstructure Characterization of ZnSb Nanowires 2.3.1 Scanning Electron Microscope (SEM) Observations 2.3.2 Transmission Electron Microscope (TEM) Observations 2.3.3 Energy Dispersive Spectrometer (EDS) Analysis 2.3.4 X-ray Diffraction (XRD) Analysis 2.3.5 Raman Measurement Chapter 3 Sb-ZnSb nanowires 3.1 Motivation 3.2 Structure and Characterization of Sb-ZnSb NWs 3.2.1 The SEM of Zn0.3Sb0.7 Bulks and Sb-ZnSb NWs 3.2.2 Metallographic Test 3.2.3 XRD Analysis 3.2.4 Linescan Analysis of Sb/ZnSb NWs 3.2.5 Raman Spectrum 3.2.6 TEM Analysis of Sb-ZnSb NWs Chapter 4 Sb2S3 Nanowires 4.1 Motivation 4.2 Structure and Characterization of Sb2S3 NWs 4.2.1 The SEM of Sb2S3 Bulks and Sb2S3 NWs 4.2.2 XRD Analysis 4.2.3 Raman Spectrum 4.2.4 TEM Analysis of Sb2S3 NWs Chapter 5 Summary and Conclusions 5.1 Sb-ZnSb Nanowires 5.2 Sb2S3 Nanowires Chapter 6: Future Works 6.1 Sb-ZnSb NWs 6.2 Sb2S3 NWs Reference

[1] R. P. Feynmen, “There’s plenty of room at the bottom,” the annual meeting of the American physical society on December 29th at the California institute of technology, 1959.
[2] Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical Properties”, Journal of Physical Chemistry, 1991, 95, 525-532.
[3] G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. Bradley and K. G. Kornev, “Carbon nanotubes loaded with magnetic particles”, Nano Letters, 2005, 5, 879-884.
[4] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 1993, 363, 603.
[5] Z. L. Wang, “Nanowires and nanobelts-materials, properties and devices; Vol-I: Metal and semiconductor nanowires,” Kluwer Academic Publisher, 2003.
[6] P. Yang and C. M. Lieber, “Nanorod-superconductor composites: A pathway to materials with high critical current densities,” Science, 1996, 273, 1836.
[7] Z. L. Wang, “Nanowires and nanobelts-materials, properties and devices; vol-II: Nanowires and nanobelts of functional materials,” Kluwer Academic Publisher, 2003.
[8] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim and H. Ya, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., 2003, 15, 353.
[9] S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room temperature transistor based on a single carbon nanotube,” Nature, 1998, 393, 49.
[10] C. Lai, M. Lu and L. Chen, “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage”, Journal of Materials Chemistry, 2012, 22, 19-30.
[11] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., 1964, 4, 89.
[12] B. A. Unvala, “Chemical Vapor Deposition”, US Patent 499361, 1991.
[13] E. Mafakheri, A. Salimi, R. Hallaj, A. Ramazani and M. A. Kashi, “Synthesis of iridium oxide nanotubes by electrodeposition into polycarbonate template: fabrication of chromium (III) and arsenic (III) electrochemical sensor”, Electroanalysis, 2011, 23, 2429-2437.
[14] C. R. Martin, “Nanomaterials: A membrane-based synthetic approach”, Science, 1994, 266, 1961-1966.
[15] A. Huczko, “Template-based synthesis of nanomaterials”, Applied Physics A, 2000, 70, 365-376.
[16] C. R. Martin, “Membrane-based synthesis of nanomaterials”, Chemistry of Materials, 1996, 8, 1739-1746.
[17] J. Wang, M. Tian, N. Kumar and T. E. Mallouk, “Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition”, Nano Letter, 2005, 5, 1247-1253.
[18] S. Valizadeh, M. Abid, F. Hernandez-Ramırez, A. R. Rodrıguez, K. Hjort and J. Å. Schweitz, “Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques”, Nanotechnology, 2007, 17, 1134-1139.
[19] C. Xu, L. Zhang, H. Zhang and H. Li, “Well-dispersed gold nanowire suspension for assembly application”, Applied Surface Science, 2005, 252, 1182-1186.
[20] M. Zhou, S. Chen, S. Zhao and H. Ma, “One-step synthesis of Au-Ag alloy nanoparticles by a convenient electrochemical method”, Physica E, 2006, 33, 28-34.
[21] G. Zhang, E. Roy, H. Liu, W. Liu, S. Hou, Y. Kui and Z. Xue, “Field emission from an array of free-standing metallic nanowires”, Chinese Physics Letters, 2002, 19, 1016-1018.
[22] C. Peng, L. Cheng and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media”, Journal of Applied Physics, 1997, 82, 4183-4191.
[23] Po-Chun Chena, Chien-Chon Chenb, Shih-Hsun Chenc, Chung-Yi Choud, Sheng-Jen Hsieh, “Highly sensitive arrayed indium-antimony nanowires for infrared detection”, The international society for optic and photonics, 2015.
[24] Xunyu Yang, Gongming Wang, Peter Slattery, Jin Z. Zhang, and Yat Li , “Ultrasmall Single-Crystal Indium Antimonide Nanowires”, Cryst. Growth Des. , 2010, 6, 2479-2482.
[25] AnuragSrivastava, NehaTyagi, “Structural and electronic properties of AlX (X = P, As, Sb) nanowires: ab initio study”, Materials Chemistry and Physics, 2012, 137, 103-112.
[26] P. S. Dutta and H. L. Bhat, “The physics and technology of gallium antimonide: An emerging optoelectronic material”, J. Appl. Phys., 1997, 81, 5820-5871.
[27] D. M. Trichês, S. M. Souza, J. C. de Lima, T. A. Grandi, C. E. M. Campos, A. Polian, J. P. Itié, F. Baudelet, and J. C. Chervin, “High-pressure phase transformation of nanometric ZnSb prepared by mechanical alloying”, J. Appl. Phys., 2009, 106, 013509.
[28] A. Fischer, E.-W. Scheidt, W. Scherer, D. Benson, Y. Wu, D. Eklöf, U. Häusserman, “Thermal and vibrational properties of thermoelectric ZnSb - exploring the origin of low thermal conductivity”, Physical Review B, 2015, 22, 1-25.
[29] Forrest L. Carter and Robert Mazelsky, “The ZnSb structure; a further enquiry”, J. Phys. Chenz. Solids, 1963, 25, 571-581.
[30] Hyung Cheoul Shim, Chang-Su Woo, and Seungwoo Han, “Thermal cycling behavior of zinc antimonide thin films for high temperature thermoelectric power generation applications”, ACS Appl. Mater. Interfaces, 2015, 7, 17866-17873.
[31] A. Bellucci, M. Mastellonea, M. Girolamia, S. Orlandob, L. Medicic, A. Mezzid, S. Kaciulis, R. Polini, D.M. Trucchi, “ZnSb-based thin films prepared by ns-PLD for thermoelectric applications. ”, Applied Surface Science, 2017, 418, 589-593.
[32] Zhuang-hao Zheng, Ping Fan, Jing-ting Luo, Guang-xing Liang, Peng-juan Liu, Dong-ping Zhang, “Enhanced thermoelectric properties of Cu doped ZnSb based thin films”, Journal of Alloys and Compounds, 2016, 668, 8-12.
[33] Cheol-Min Park and Hun-Joon Sohn, “Quasi-Intercalation and facile amorphization in layered ZnSb for Li-ion batteries,” Adv. Mater. 2010, 22, 47-52.
[34] S. Liao, Y. Sun, Jing Wang, H. Cui, Chengxin Wang, “Three dimensional self-assembly ZnSb nanowire balls with good performance as sodium ions battery anode.”, Electrochimica Acta, 2016, 211, 11-17.
[35] Somaye Saadat, Yee Yan Tay, Jixin Zhu, Pei Fen Teh, Saeed Maleksaeedi, Mohammad Mehdi Shahjamali, Maziar Shakerzadeh, Madhavi Srinivasan, Bee Yen Tay, Huey Hoon Hng, Jan Ma, and Qingyu Yan, “Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-ion battery anodes”, Chem. Mater., 2011, 23, 1032-1038.
[36] J.L. Martin, M. Goiran, E.K. Arushanov, J. Leotina and S. Askenazy, “Far infrared magnetotransmission and hole cyclotron resonance at high magnetii fields in p-ZnSb”, Physica B, 1992,177, 481-484.
[37] H. Komiya, K. Masumoto, and H. Y. Fan, “Optical and electrical properties and energy band structure of ZnSb”, Phys Rev, 1964,133, 1679-1684.
[38] Heon-Bok Lee, Hyun Jeong Yang, Ju Hyung We,1 KukJoo Kim,1 Kyung Cheol Choi,1 and Byung Jin Cho, “Thin-film thermoelectric module for power generator applications using a screen-printing method”, Journal of Electronic Materials, 2011, 40, 615-619.
[39] Kinga Niedzioika and Philippe Jund, “Influence of the exchange–correlation functional on the electronic properties of ZnSb as a promising thermoelectric material”, Journal of Electronic materials, 2015, 44, 1540-1546.
[40] C. S. Barrett, P. Cucka and K. Haeyner, “The crystal structure of antimony at 4.2, 78 and 298 K “, Acta Cryst., 1963, 16, 451.
[41] A. F. Hollerkamp, “Premature capacity loss in lead/acid batteries: a discussion of the antimony-free effect and related phenomena”, Journal of Power Sources, 1991, 36, 567-585.
[42] Nair, M. T. S.; Pena, Y.; Campos, J.; Garcia, V. M.; Nair, P. K. J., “Chemically deposited Sb2S3 and Sb2S3-CuS thin films” Electrochem. Soc., 1998, 145, 2113-2120.
[43] Kai Zhang, Tao Luo, Haoran Chen, Zheng Lou and Guozhen Shen, “Au-nanoparticles-decorated Sb2S3 nanowire based flexible ultraviolet/visible photodetectors” J. Mater. Chem. C, 2017, 5, 3330-3335.
[44] Soo-Jin Moon, Yafit Itzhaik, Jun-Ho Yum, Shaik M. Zakeeruddin, Gary Hodes and Michael Gr€atzel, “Sb2S3-based mesoscopic solar cell using an organic hole conductor”, J. Phys. Chem. Lett., 2010, 1, 1524–1527.
[45] Yafit Itzhaik, Olivia Niitsoo, Miles Page, and Gary Hodes, “Sb2S3-sensitized nanoporous TiO2 solar cells”, J. Phys. Chem. C, 2009, 113, 4254-5256.
[46] Ashok Bera, Ayon Das Mahapatra, Sulakshana Mondal, Durga Basak, “Sb2S3/spiro-OMeTAD inorganic-organic hybrid p-n junction diode for high performance self-powered photodetector”, ACS Appl. Mater. Interfaces, 2016, 8, 34506−34512.
[47] B.Roy, B.R.Chakraborty, R.Bhattacharya, A.K.Dutta, “Electrical and magnetic properties of antimony sulphide (Sb2S3) crystals and the mechanism of carrier transport in it”, Solid State Communications, 1978, 25, 937-940.
[48] Hulin Zhang, Chenguo Hu, Yong Ding, Yuan Lin, “Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO”, Journal of Alloys and Compounds, 2015, 625, 90-94.
[49] Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties”, Journal of Physical Chemistry, 1991, 95, 525-532.
[50] Tadashi Saku, Koji Muraki and Yoshiro Hirayama, “High-mobility two-dimensional electron gas in an undoped heterostructure: mobility enhancement after illumination”, J. Appl. Phys. 1998. 37, 765-767.
[51] E. M. CONWELL, “High field mobility in gerisianium with impurity scattering dominant”, Physical Review, 1953, 90, 769-772.
[52] Jiaqi He, Nardeep Kumar, Matthew Z. Bellus, Hsin-Ying Chiu, Dawei He, Yongsheng Wang and Hui Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures”, Nature Communications, 2014,5 , 1-5.
[53] John W. Cahn, “Phase separation by spinodal decomposition in isotropic systems”, The Journal of Chemical Physics, 1965, 42, 93-99.
[54] J. W. Gibbs, Collected Works (Yale University Press, New Haven, Connecticut, 1948, 1, 105-115.
[55] Younan Xia, Xiao-Mei Zhao, Enoch Kim, and George M. Whitesides, “A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold”, Chem. Mater., 1995, 7, 2332-2337.
[56] A. Rumberg, Ch. Sommerhalter, M. Toplak, A. JaÈger-Waldau, M. Ch. Lux-Steiner , “ZnSe thin films grown by chemical vapor deposition for application as buffer layer in CIGSS solar cells”, Thin Solid Films, 2000, 361, 172-176.
[57] X. T. Zhang, K. M. Ip, Quan Li, and S. K. Hark, “Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition”, Applied Physics Letters, 2005, 86, 203114.
[58] Yennai Wang, Junhong Chi, Karan Banerjee, Detlev Grűtzmacher, Thomas Sch€apersbc and Jia G. Lu, “Field effect transistor based on single crystalline InSb nanowire”, J. Mater. Chem., 2011, 21, 2459-2462.
[59] Daniele Ercolani, Francesca Rossi, Ang Li, Stefano Roddaro1 , Vincenzo Grillo, Giancarlo Salviati, Fabio Beltram and Lucia Sorba, “InAs/InSb nanowire heterostructures grown by chemical beam epitaxy”, Nanotechnology, 2009, 20,505605.
[60] Sefaattin Tongay, Wen Fan, Jun Kang, Joonsuk Park, Unsal Koldemir,Joonki Suh, Deepa S. Narang, Kai Liu, ie Ji, Jingbo Li, Robert Sinclair, and Junqiao Wu, “Tuning interlayer coupling in large-area heterostructures with CVD grown MoS2 and WS2 monolayers”, Nano Lett., 2014, 14, 3185-3190.
[61] Weihuang Yang, Jingzhi Shang, Jianpu Wang, Xiaonan Shen, Bingchen Cao, Namphung Peimyoo, Chenji Zou, Yu Chen, Yanlong Wang, Chunxiao Cong, Wei Huang and Ting Yu, “Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2”, Nano Lett., 2016, 16, 1560-1567.
[62] Wenjing Zhang, Jing-Kai Huang, Chang-Hsiao Chen, Yung-Huang Chang , Yuh-Jen Cheng, and Lain-Jong Li, “High-gain phototransistors based on a CVD MoS2 monolayer”, Adv. Mater., 2013, 25, 3456-3461.
[63] Yongjie Zhan, Zheng Liu, Sina Najmaei, Pulickel M. Ajayan and Jun Lou, “Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate”, Small, 2012, 8, 966-971.
[64] Atresh Sanne, Rudresh Ghosh, Amritesh Rai, Maruthi Nagavalli Yogeesh, Seung Heon Shin, Ankit Sharma, Karalee Jarvis, Leo Mathew, Rajesh Rao, Deji Akinwande and Sanjay Banerjee, “Radio frequency transistors and circuits based on CVD MoS2”, Nano Lett., 2015, 15, 5039−5045.
[65] Jingjie Xu , Haoyu Wu , Fei Wang , Yongyao Xia , and Gengfeng Zheng, “Zn4Sb3 nanotubes as lithium ion battery anodes with high capacity and cycling stability”, Adv. Energy Mater. 2013, 3, 286–289.
[66] ChenhuinanWei, GuoxingWu, SanjunYang and Qiming Liu, “Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation”, Nature, 2016, 43779.
[67] Yunxia Zhang, Shaodong Sun, Dongchu Deng, Xiaoping Song, Bingjun Ding and Zhimao Yang, “Electrochemical deposition mediated growth of hierarchical Au architectures and the applications for SERS” , Cryst. Eng. Comm., 2012, 14, 656-662.
[68] A. Fischer, E.-W. Scheidt, W. Scherer, D. Benson, Y. Wu, D. Eklöf, U. Häussermann, “Thermal and vibrational properties of thermoelectric ZnSb- exploring the origin of low thermal conductivity”, Physical Review B, 2015, 91, 224309.
[69] P. Hermet, M. M. Koza, C. Ritter, C. Reibela and R. Viennois, “Origin of the highly anisotropic thermal expansion of the semiconducting ZnSb and relations with its thermoelectric applications”, RSC Adv., 2015, 5, 87118-87131.
[70] J. Petzelt, J. Grigas, “Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals”, Ferroelectric, 1973, 5, 59-68.
[71] K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds, 4th Editions”, John wiley & Sons, São Paulo, 1986.
[72] Ilias Efthimiopoulos, Cienna Buchan, YuejianWang, “Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition”, Nature, 2016, 24246.
[73] M. medles, N. Benramdane, A. Bouzidi, K. Sahraoui, R. Miloua, R. Desfeux, C. Mathieu, “Raman and optical studies of spray pyrolysed Sb2S3 thin films”, Journal of Optoelectronics and Advanced Materials, 2014, 16, 726-731.
[74] Ulrich Haussermann, William Petuskey, Nathan Newman, Yang Wu, “Synthesis, structures and properties of thermoelectric materials in the Zn-Sb-In system, 2011.
[75] B. Predel, “Phase equilibria, crystallographic and thermodynamic data of binary alloy, Physical Chemistry, 2013.

QR CODE