簡易檢索 / 詳目顯示

研究生: 陳琬菁
Wan-Ching Chen
論文名稱: Ni/Sn-xZn/Cu三明治結構反應偶之界面反應
Interfacial reaction of the Ni/Sn-xZn/Cu sandwich structure couples
指導教授: 顏怡文
Yee-wen Yen
口試委員: 施劭儒
Shao-ju Shih
吳子嘉
Tzu-chia Wu
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 反應路徑三明治結構介金屬相界面反應
外文關鍵詞: reaction path, sandwich structure, IMC phase, interfacial reaction
相關次數: 點閱:221下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

銲料在電子構裝中為不可或缺的材料之一,其作為電子元件與基板的連結材料;在本實驗中使用Sn-Zn合金作為銲料,是因其成本低廉且熔點較接近於傳統的Sn-Pb銲料。然而,在電子構裝技術當中,BGA與FC技術為目前被廣泛應用的主流之一,而Ni/solder/Cu結構為其中最常見的結構。因此本研究為Ni/Sn-xZn/Cu三明治結構反應偶之界面反應,目的在於探討Sn-Zn合金中的Zn含量、Cu, Ni原子之間互相擴散及銲料厚度是否會影響兩端界面處的介金屬相生成。
研究結果顯示,Sn-Zn銲料中的Zn含量及Cu的擴散會影響IMC相的生成,當添加量為1 wt%時,迴焊後在Ni端界面處會生成(Ni, Cu)3Sn4相,時效處理後會發生相轉變生成(Cu, Ni, Zn)6Sn5相;Cu端界面處在迴焊及時效後皆為Cu6Sn5相。Zn含量在5 wt%以上時,Ni端界面處會生成Ni5Zn21相;Cu端界面處則會生成Cu5Zn8相。然而Cu5Zn8相在長時間時效下會部分與界面脫離,造成Sn回填其空缺,在界面處生成(Cu, Zn)6Sn5相。
銲料厚度的改變則是使Cu更快速地擴散至Ni端,造成IMC相的轉變。Ni/Sn-5Zn, Sn-9Zn/Cu反應偶在時效1000小時後,在Ni端界面處生成Ni5Zn21、Cu5Zn8及(Ni, Cu, Sn)Zn相。


In this study, the Sn-Zn alloys were used as the solders because of its low cost and the melting point is closer to the conventional Sn-Pb solder.
However, BGA and FC technology are two of the mainstreams applied to the electronic packaging widely, and the Ni/solder/Cu structure is the most common one. Therefore, this study demonstrates interfacial reaction of the Ni/Sn-xZn/Cu sandwich structure couples, the purpose is to investigate whether the Zn content of the Sn-Zn alloy, inter-diffusion between Cu and Ni atoms and the thickness of the solders will effect the formation of IMC phases.
The results reveal that the Zn content of the Sn-Zn alloy and the diffusion of Cu atoms will affect the formation of IMC phases. When the Zn content is 1 wt%, the (Ni, Cu)3Sn4 phase was formed on the interface of the Ni side after soldering. Then, the (Ni, Cu)3Sn4 phase changed into the (Cu, Ni, Zn)6Sn5 phase after aging for 40 h. While the Zn content is more than 5 wt%, the Ni5Zn21 phase was formed on the interface of the Ni side, and the Cu5Zn8 phase was formed on the interface of the Cu side. After long-term aging, the Cu5Zn8 phase departed from the interface, and the Sn atoms refilled the vacancies. Then, the (Cu, Zn)6Sn5 phase was formed on the interface between the Cu5Zn8 phase and the Cu substrate.
The thickness of the solders were decreased to 0.5 mm to make the Cu atoms diffuse to the Ni side more quickly, then cause the transformation of IMC phase on the Ni side.

摘要 I 目錄 III 圖目錄 VI 表目錄 XII 第一章 、前言 1 第二章 、文獻回顧 3 2-1 電子構裝 3 2-1.1 電子構裝簡介 3 2-1.2 覆晶接合及球閘陣列式構裝技術 5 2-2 界面反應與擴散理論 11 2-2.1 界面反應 11 2-2.2 擴散理論 14 2-3 界面反應相關文獻 16 2-3.1 Sn-Zn/Ni界面反應 16 2-3.2 Sn-Zn/Cu界面反應 20 2-3.3 Ni/Sn-Zn/Cu界面反應 22 2-3.4 相關文獻 24 2-4 界面反應路徑 28 2-4.1 擴散路徑 28 2-4.2 Sn-Zn銲料與Ni之界面反應路徑 31 2-4.3 Sn-Zn銲料與Cu之界面反應路徑 33 第三章、實驗方法 36 3-1 Sn-xZn銲料與Cu, Ni基材製備 36 3-2 Ni/Sn-xZn/Cu三明治結構反應偶製備 36 3-3 金相處理 38 3-4 界面觀察與分析 39 第四章、結果與討論 41 4-1 Ni/Sn-xZn/Cu之界面反應與反應機制(銲料厚度為1 mm) 41 4-1.1 Ni/Sn-xZn/Cu(x=1 wt%)反應偶 41 4-1.2 Ni/Sn-xZn/Cu(x=5, 9 wt%)反應偶 48 4-1.3 不同 Zn 含量之反應偶的反應機制 61 4-1.4 Ni/Sn-xZn/Cu(x=20, 40 wt%)反應偶 70 4-2 Ni/Sn-xZn/Cu之界面反應(銲料厚度為0.5 mm) 75 4-2.1 Ni/Sn-xZn/Cu(x=1 wt%)反應偶 75 4-2.2 Ni/Sn-xZn/Cu(x=5、9 wt%)反應偶 79 4-3 不同銲料厚度對相同比例合金的反應偶之界面反應比較 88 4-3.1 Ni/Sn-1Zn反應偶 88 4-3.2 Ni/Sn-5Zn, Sn-9Zn/Cu 反應偶 88 4-4 界面反應路徑 90 4-4.1 Ni/Sn-1Zn 反應偶 90 4-4.2 Ni/Sn-xZn/Cu反應偶,x為1, 5, 9 wt% 91 4-4.3 Sn-xZn/Cu反應偶,x為20, 40 wt% 93 第五章、結論 94 參考文獻 96

[1] C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Materials Science and Engineering Reports, 44 (2004) 1-44.
[2] “WEEE Regulations”EU-Directive 96/EC (2002).
[3] “RoHS Regulations”EU-Directive 95/EC (2002).
[4] J. Mittal, S. M. Kuo, Y. W. Lin and K. L. Lin, Journal of Electronic Materials, 38 (2009) 2436-2442.
[5] G. Ghosh, Acta Materialia, 48 (2000) 3719-3738.
[6] D. P. Seraphim, R. C. Lasky and Che-Yu Li, published by McGraw-Hill, New York (1989).
[7] J. H. Lau, C. P. Wong, J. L. Prince and W. Nakayama, published by McGraw-Hill, New York (1998).
[8] 洪惠慈,錫鋅系無鉛銲錫與金屬化銅基材之接合行為與界面反應,國立成功大學材料科學及工程學系研究所碩士論文(2004)。
[9] 林定皓著, “印刷電路板電子組裝技術概述”, 台灣電路板協會(2006)。
[10]陳瑞川,利用覆晶技術封裝雷射陣列模組織研究,國立台灣科技大學電子工程系研究所碩士論文(2006)。
[11]魏弘堯,在BGA製程中以銦作為UBM層對接點界面形態與機械性質之探討,國立台灣科技大學材料科技研究所碩士論文(2006)。
[12]R. R. Tummala and E. J. Rymaszewski, published by Van Nostrand
Reinhold, New York (1989).
[13]http://blogs.indium.com/blog/an-interview-with-the-professor/ibm-announces-shipment-of-lead-free-c4-joints
[14]D. P. Seraphim, R. C. Lasky and C-Y. Li, published by McGraw-Hill, New York (1993).
[15]S. M. Hong, J. Y. Park, J. P. Jung and C. S. Kang, Journal of Electronic Materials, 30 (2001) 937-944.
[16]http://www.ami.ac.uk/courses/topics/0260_fc/
[17]C. L. Tsao and S. W. Chen, Journal of Materials Science, 30 (1995) 5215-5222.
[18]黃育智,不同尺寸電子銲點中之相生成與相變化,國立清華大學化學工程研究所博士論文。(2010)
[19]A. A. Kodentsov, G. F. Bastin and F. J. J. van Loo, Journal of Alloys and Compounds, 320 (2001) 207-217.
[20]W. J. Zhu, H. S. Liu, J. S. Wang, G. Ma and Z. P. Jin, Journal of Electronic Materials, 39 (2010) 209-214.
[21]C. H. Chen, C. P. Lin and C. M. Chen, Journal of Electronic Materials, 38 (2009) 61-69.
[22]S. C. Yang, C. E. Ho and C. W. Chang, Journal of Materials Research, 21 (2006) 2436-2439.
[23]C. H. Wang and H. H. Chen, Journal of Electronic Materials, 39 (2010) 2375-2381.
[24]C. H. Wang and H. H. Chen, Journal of Electronic Materials, 40 (2011) 2436-2444.
[25]Y. W. Yen, D. W. Liaw, K. D. Chen and H. Chen, Journal of
Electronic Materials, 39 (2010) 2412-2417.
[26]C. M. Chen and C. H. Chen, Journal of Electronic Materials, 36 (2007) 1363-1371.
[27]X. F. Zhang, J. D. Guo and J. K. Shang, Journal of Electronic Materials, 38 (2009) 425-429.
[28]P. S. Ho and T. Kwok, Reports on Progress in Physics, 52 (1989) 301-348.
[29]W. K. Liou, Y. W. Yen and C. C. Jao, Journal of Electronic Materials, 38 (2009) 2222-2227.
[30]Y. W. Yen and W. K. Liou, Journal of Materials Research, 22 (2007) 2663-2667.
[31]N. Zhao, H. Ma, H. P. Xie and L. Wang, Journal of Materials Science and Technology, 25 (2009) 410-414.
[32]T. B. Massalski, Binary Alloy Phase Diagrams CD-ROM, Materials Park, OH: ASM International (1996).
[33]S. J. Wang and C.Y. Liu, Journal of Electronic Materials, 32 (2003) 1303-1309.
[34]S. Bader, W. Gust and H. Hieber, Acta Metallurgica Meterials, 43 (1994) 329-337.
[35]C. W. Chang, S. C. Yang and C. R. Kao, Journal of Electronic Materials, 36 (2007) 1455-1461.
[36]柴世融,3D IC構裝中之Cu/Sn/Ni三明治反應偶之界面反應,國立台灣科技大學材料科學與工程系碩士論文。(2011)
[37]P. L. Tu, Y. C. Chan, K. C. Hung and J. K. L. Lai, Scripta Materialia, 44 (2001) 317-323.
[38]林承寬,錫-鋅合金與金基材之界面反應,國立台灣科技大學材料科學與工程系研究所碩士論文。(2011)
[39]B. F. Dyson, T. R. Anthony and D. Turnbull, Journal of Applied Physics, 38 (1967) 3408.
[40]A. P. Miodownik, Binary Alloy Phase Diagrams, 1990, p.1508-1510.
[41]傅淑玫,添加多壁奈米碳管於Sn-Ag-Cu無鉛銲料之性質研究,國立台灣科技大學材料科學與工程系研究所碩士論文。(2012)
[42]C. Y. Li, G. J. Chiou and J. G. Duh, Journal of Electronic Materials, 35 (2006) 343-352.
[43]H. W. Tseng, S. J. Wang and C. Y. Liu, Electronics Packaging Technology Conference, (2009) 325-330.
[44]W. C. Luo, C. E. Ho, J. Y. Tsai, Y. L. Lin and C. R. Kao, Materials Science and Engineering, A 396 (2005) 385-391.

QR CODE