簡易檢索 / 詳目顯示

研究生: 衛優
I - Made Wahyu Diyatmika
論文名稱: 以金屬玻璃薄膜阻障層來抑制電子封裝中錫鬚晶生長之研究
Thin Film Metallic Glass as an Underlayer for Tin Whisker Mitigation in Electronic Packaging
指導教授: 朱瑾
Jinn P. Chu
口試委員: 顏怡文
Yee-Wen Yen
黃志青
Jacob Huang
鄭憲清
J. S. C. Jang
吳子嘉
Albert T. Wu
高振宏
C. R. Kao
薛承輝
C. H. Hsueh
陳志銘
C. M. Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 108
中文關鍵詞: 錫鬚電子封裝金屬玻璃薄膜阻障層
外文關鍵詞: thin film metallic glass, electronic packaging, Sn whiskers, underlayer
相關次數: 點閱:307下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一般於微電子封裝中,人們會加入一層阻障層來抑制錫鬚的生長,這錫鬚之生成會導致電子器件之短路及失效,故這層阻障層可以防止銅錫之間反應進而產生介金屬化合物,而此銅錫介金屬化合物為錫鬚生長的主要驅動力之一。目前於研究及工業應用上厚度達數個微米之鎳金屬已被廣泛的被使用為阻障層,然而因為鎳層屬於多晶結構,其晶界仍可能提供了銅錫之間反應擴散的途徑。因此於本研究中,以Zr46Ti26Ni28 及 Zr51.7Cu32.3Al9Ni7 兩種不同成分的金屬玻璃薄膜作為阻障層來阻止銅錫之間的反應,於本實驗中,以有鍍金屬玻璃膜及無鍍膜之試片作為比較,使其在恆溫及循環模式下進行熱處理,我們發現,僅有25奈米的金屬玻璃薄膜已經可以有效阻止銅錫之間的反應。並於加速測試下,在鍍有金屬玻璃阻障層之試片上我們沒有觀察到任何錫鬚,相反的,在無鍍阻障層之試片,我們發現錫鬚的數量隨著時效時間增加及溫度的上升而增加,此外,當於熱循環加熱測試時,由於金屬玻璃阻障層非常薄(僅25奈米),因此只會產生微量的壓應力。本研究發現,金屬玻璃阻障層能有效的抑制錫鬚的生長,其厚度薄且具有非晶的結構使金屬玻璃薄膜可以成為有效抑制錫鬚產生的擴散阻障層材料。


Introduction of underlayer is one of the mitigation methods commonly used for the suppression of the Sn whiskering phenomenon in electronic packaging. Sn whiskers have been found to result in detrimental short circuits and arcing in electrical devices and eventually the failure of device. The presence of a proper underlayer is used to prevent the intermetallic compound formation resulting from a Cu/Sn interaction, which is believed to be the major driving force of Sn whisker growth. Plated μm-thick Ni as an underlayer has been widely studied and industrially accepted. However, Ni underlayer suffers from its polycrystalline grain structure where grain boundaries can potentially act as a diffusion path for the Cu/Sn interaction to take place. In this study, Zr46Ti26Ni28 and Zr51.7Cu32.3Al9Ni7 thin film metallic glasses (TFMGs) underlayers are introduced to alleviate the Cu/Sn interaction. Samples with and without TFMGs underlayers were subjected to various heat treatments at elevated temperatures in monotonic and cyclic modes. TFMG underlayer effectively blocks the Cu/Sn interaction, even with the thickness as thin as 25 nm. No Sn whisker is observed in the sample with TFMG underlayer after acceleration tests. In contrast, Sn whiskers are found in the absence of the underlayer and the whisker density increases with increasing aging time and temperature. In addition, with the concept of using very thin underlayer, the introduction of TFMG underlayer is expected to yield insignificant degrees of compressive stress, which is anticipated to occur when the samples are exposed to thermal cycling. It is found that TFMG underlayer plays an important role in effectively suppressing Sn whisker growth. Their thin thickness and amorphous nature are considered beneficial to make TFMGs as a promising diffusion barrier for Sn whisker mitigation.

摘要 ii Abstract iii Acknowledgments iv List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Background of study 1 1.2 Objectives of study 3 Chapter 2 Literature review 5 2.1 Characteristics of Sn whisker 5 2.2 Mechanisms of Sn whisker growth 6 2.3 Driving force of Sn whisker growth 10 2.4 Cu-Sn thin film couples 11 2.5 Sn whisker mitigations 14 2.6 Ni underlayer 16 2.7 Amorphous diffusion barrier 20 2.8 Thin film metallic glass 20 2.9 Wettability of metallic glass 22 2.10 Grain refinement in Cu alloy thin film 27 2.11 Physical Vapor deposition (PVD) 28 2.11.1 Sputter deposition 28 2.11.2 Magnetron sputtering 30 2.11.3 Electron beam (e-beam) evaporation 32 2.12 Electroplating deposition 34 Chapter 3 Experimental procedures 36 3.1 Cu-Sn bulk couples 36 3.1.1 Sample designations 37 3.1.2 Substrate preparations 37 3.1.3 Cu alloy thin film deposition 37 3.1.4 Pre-annealing 39 3.1.5 Sn layer deposition 40 3.1.6 Aging treatment 40 3.1.7 Surface morphology and interfacial observation 41 3.1.8 Chemical composition analysis 42 3.2 Thin film metallic glass characterizations 43 3.2.1 Thermal analysis 43 3.2.2 Crystallographic analysis 44 3.2.3 Microstructure analysis 44 3.2.4 Electrical resistivity measurement 45 3.2.5 Surface roughness analysis 46 3.2.6 Adhesion evaluation 46 3.3 Cu-Sn thin film couples 47 3.3.1 Sample designations 48 3.3.2 Substrate preparations 48 3.3.3 Ti and Cu thin film depositions 48 3.3.4 Thin film metallic glass depositions 50 3.3.5 Sn layer depositions 51 3.3.6 Aging treatment 52 3.3.7 Thermal cycling 52 3.3.8 Thermal reflow 52 3.3.9 Surface morphology and Sn whisker observation 52 3.3.10 Crystallographic analysis 52 3.3.11 Microstructure analysis 53 Chapter 4 Results and discussion 54 4.1 Sn whisker formation in Cu-Sn bulk couples 54 4.1.1 Effect of Cu(Ru) underlayer on Sn whisker formation 55 4.1.2 Effect of pre-annealing on Sn whisker formation 58 4.2 Sn whisker formation in Cu-Sn thin film couples 61 4.3 Thin film metallic glass characterizations 65 4.3.1 Crystallographic analysis 65 4.3.2 Thermal analysis 67 4.3.3 Surface roughness analysis 68 4.3.4 Electrical resistivity measurement 69 4.3.5 Adhesion evaluation 69 4.4 Thin film metallic glass as an underlayer for Sn whisker mitigation 71 4.4.1 Thermal stability of Zr46Ti26Ni28 TFMG underlayer aged at room temperature 71 4.4.2 Thermal stability of Zr46Ti26Ni28 and Zr51.7Cu32.3Al9Ni7 TFMGs underlayer aged at various temperatures 83 4.4.3 Thermal cycling stability of Zr46Ti26Ni28 TFMG underlayer 94 4.4.4 Thermal reflow stability of Zr46Ti26Ni28 TFMG underlayer 96 Chapter 5 Conclusions & Future Works 98 5.1 Conclusions 98 5.2 Future works 99 References 101

[1] K. Tu, C. Chen, A.T. Wu, Journal of Materials Science: Materials in Electronics 18/1 (2007) 269.
[2] B.Z. Lee, D.N. Lee, Acta Materialia 46/10 (1998) 3701.
[3] M. Sobiech, U. Welzel, E. Mittemeijer, W. Hugel, A. Seekamp, Applied Physics Letters 93/1 (2008) 011906.
[4] A. Baated, K.S. Kim, K. Suganuma, Journal of Materials Science: Materials in Electronics 22/11 (2011) 1685.
[5] K. Kim, C. Yu, S. Han, K. Yang, J. Kim, Microelectronics Reliability 48/1 (2008) 111.
[6] S.B. Li, G.P. Bei, H.X. Zhai, Z.L. Zhang, Y. Zhou, C.W. Li, Journal of Materials Research 22/11 (2007) 3226.
[7] K. Tu, Acta Metallurgica 21/4 (1973) 347.
[8] J. Brusse, G. Ewell, J. Siplon, Carts Europe 16 (2002).
[9] M.N. Chen, S.J. Ding, Q.Q. Sun, D.W. Zhang, L.K. Wang, Journal of Electronic Materials 37/6 (2008) 894.
[10] B. Horvath, B. Illes, T. Shinohara, G. Harsanyi, Thin Solid Films 520/1 (2011) 384.
[11] B. Illes, B. Horvath, G. Harsanyi, Surface and Coatings Technology 205/7 (2010) 2262.
[12] T. Liu, D. Ding, K.P. Galuschki, Y. Hu, Y. Gong, M. Shen, IEEE Transactions on Components, Packaging and Manufacturing Technology 2/5 (2012) 731.
[13] L. Panashchenko, M. Osterman, Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, p. 1037.
[14] Y.W. Yen, W.K. Liou, C.C. Jao, Components, Packaging and Manufacturing Technology, IEEE Transactions on 1/6 (2011) 951.
[15] W. Yiqing, D. Dongyan, L. Ting, K.P. Galuschki, H. Yu, A. Gong, S. Ming, S. Hongqi, W. Xianfeng, S. Jiangyan, L. Ming, M. Dali, Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2010 11th International Conference on, 2010, p. 980.
[16] G.T. Galyon, L. Palmer, Electronics Packaging Manufacturing, IEEE Transactions on 28/1 (2005) 17.
[17] M.A. Nicolet, Applied Surface Science 91/1 (1995) 269.
[18] J. Reid, E. Kolawa, C. Garland, M.A. Nicolet, F. Cardone, D. Gupta, R. Ruiz, Journal of Applied Physics 79/2 (1996) 1109.
[19] X. Sun, J.S. Reid, E. Kolawa, M.A. Nicolet, Journal of Applied Physics 81/2 (1997) 656.
[20] X. Sun, J.S. Reid, E. Kolawa, M.A. Nicolet, R.P. Ruiz, Journal of Applied Physics 81/2 (1997) 664.
[21] J.P. Chu, J.C. Huang, J.S.C. Jang, Y.C. Wang, P.K. Liaw, JOM 62/4 (2010) 19.
[22] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films 520/16 (2012) 5097.
[23] B.D. Dunn, Metals and Materials 34 (1975) 34.
[24] B.D. Dunn, Circuit World 2/4 (1976) 32.
[25] K.N. Tu, R.D. Thompson, Acta Metallurgica 30/5 (1982) 947.
[26] J.P. Winterstein, J.B. LeBret, M.G. Norton, Journal of Materials Research 19/3 (2004) 689.
[27] C.L. Rodekohr, G.T. Flowers, M.J. Bozack, R. Jackson, R. Martens, Z. Zhao, E.R. Crandall, V. Starman, T. Bitner, J. Street, 2011, p. 205.
[28] F. Pei, N. Jadhav, E. Chason, Applied Physics Letters 100/22 (2012) 221902.
[29] L.A. Pinol, J. Melngailis, H.K. Charles, Jr., D.M. Lee, R. Deacon, G. Coles, G. Clatterbaugh, Components, Packaging and Manufacturing Technology, IEEE Transactions on 1/12 (2011) 2028.
[30] http://nepp.nasa.gov/whisker/.
[31] H. Livingston, BAE SYSTEMS Information and Electronic Warfare System (2003).
[32] W. Johler, IEEE Trans. on Comp. and Packaging. Tech. 27 (2004) 30.
[33] F. Yang, J.C.M. Li, Lead-Free Electronic Solders, Springer US, 2007, p. 191.
[34] J. Cheng, Ph. D, Department of Mechanical Engineering, University of Rochester, Rochester, New York, 2011.
[35] G.T. Galyon, Electronics Packaging Manufacturing, IEEE Transactions on 28/1 (2005) 94.
[36] J. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, F.A. Baiocchi, J. Mater. Sci. Mater. Electron 18 (2006) 283
[37] M.O. Peach, Journal of Applied Physics 23/12 (1952) 1401.
[38] S.E. Koonce, S.M. Arnold, Journal of Applied Physics 24/3 (1953) 365.
[39] F.C. Frank, Phil. Mag. 44/7 (1953) 854.
[40] J. Franks, Nature 177/4517 (1956) 984.
[41] J. Franks, Acta Met. 6/2 (1958) 103.
[42] S. Amelinckx, Bontinck, W., Dekeyser, W., Seitz, F., Phil. Mag. 2 (1957) 355.
[43] G.S. Baker, Acta Met. 5/7 (1957) 353.
[44] U. Lindborg, Metall. Trans. 6A (1975) 1581.
[45] R.M. Fisher, L.S. Darken, K.G. Carroll, Acta Metallurgica 2/3 (1954) 368.
[46] P.L. Key, Proc. of the IEEE Comp. Conf. (1970) 155.
[47] W.C. Ellis, D.F. Gibbons, R.C. Treuting, in: R.H. Doremus, B.W. Roberts, D.Turnbull (Eds.), John Wiley & Sons, New York, 1958, p. 102.
[48] V.K. Glazunova, N.T. Kudryavtsev, Translated from Zhurnal Prikladnoi Khimii 36/3 (1963) 543.
[49] T. Kakeshita, K. Shimizu, R. Kawanaka, T. Hasegawa, J. Mater. Sci. 17 (1982) 2560.
[50] B.D. Dunn, European Space Agency (ESA) Report STR-223 (1987) 1.
[51] P.T. Vianco, J.A. Rejent, J. Electronic Materials 38/9 (2009) 1815.
[52] I. Boguslavsky, P. Bush, Processing of the 2003 APEX Conference-Anaheim, CA. (2003) S12.
[53] J.A. Rejent, P.T. Vianco, J. Electronic Materials 38/9 (2009) 1826.
[54] K.N. Tu, Acta Met. 21/4 (1973) 347.
[55] K.N. Tu, Physical Review B 49/3 (1994) 2030.
[56] K.N. Tu, J.W. Mayer, L.C. Feldman, Electronic Thin Film Science, MacMillan, New York, 1992.
[57] K.N. Tu, J.C.M. Li, Mater. Sci. and Engr. A 409 (2005) 131.
[58] K. Zeng, K.N. Tu, Materials Science and Engineering: R: Reports 38/2 (2002).
[59] L.A. Pinol, J. Melngailis Jr, H.K. Charles, D.M. Lee, R. Deacon, G. Coles, G. Clatterbaugh, IEEE Transactions on Components, Packaging and Manufacturing Technology 1/12 (2011) 2028.
[60] S. Mathew, M. Osterman, T. Shibutani, Q. Yu, M. Pecht, Proc. of Intl. Symp. on High Dens. Packag. and Microsys. Integr. 2007, HDP'07 (2007) 1.
[61] C. Xu, Y. Zhang, C. Fan, J. Abys, L. Hopkins, F. Stevie, Proc. IPC SMEMA APEX Conference (2002) S06.
[62] Y. Zhang, C. Xu, C. Fan, J. Abys, A. Vysotskaya, Proc. IPC SMEMA APEX Conference (2002) S06.
[63] M. Sampson, H. Leidecker, J. Kadesch, J. Brusse, NASA website (http://nepp.nasa.gov/whisker/) (2002).
[64] J.C. Lee, Electronics Packaging Technology Conference, 2008. EPTC 2008. 10th, 2008, p. 1060.
[65] A. Dimitrovska, R. Kovacevic, Journal of Electronic Materials 38/12 (2009) 2516.
[66] Y. Wang, D. Ding, T. Liu, K.P. Galuschki, Y. Hu, A. Gong, M. Shen, H. Sun, X. Wang, J. Sun, M. Li, D. Mao, 2010, p. 980.
[67] Recommendations on Lead-Free Finishes for Components Used in High-Reliability Products Ver. 4, iNEMI, Herndon, VA, December 2006.
[68] S. Lal, T.D. Moyer, Electronics Packaging Manufacturing, IEEE Transactions on 28/1 (2005) 63.
[69] J. Chang, L. Bing, Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP '09. International Conference on, 2009, p. 1014.
[70] J.F. Loffler, Intermetallics 11/6 (2003) 529.
[71] M. Chen, NPG Asia Materials 3/9 (2011) 82.
[72] A. Castellero, B. Moser, D.I. Uhlenhaut, F.H.D. Torre, J.F. Loffler, Acta Materialia 56/15 (2008) 3777.
[73] C.J. Chen, J.C. Huang, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, Journal of Alloys and Compounds 483/1-2 (2009) 337.
[74] H.S. Chou, J.C. Huang, L.W. Chang, Surface and Coatings Technology 205/2 (2010) 587.
[75] Y. Li, Q. Guo, J.A. Kalb, C.V. Thompson, Science 322/5909 (2008) 1816.
[76] J.P. Chu, T.Y. Liu, C.L. Li, C.H. Wang, J.S.C. Jang, M.J. Chen, S.H. Chang, W.C. Huang, Thin Solid Films (2013).
[77] P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Intermetallics 31/0 (2012) 127.
[78] P.T. Chiang, G.J. Chen, S.R. Jian, Y.H. Shih, J.S.C. Jang, C.H. Lai, Fooyin Journal of Health Sciences 2/1 (2010) 12.
[79] M.L. Lee, K.K. Win, C.L. Gan, L.P. Shi, Intermetallics 18/1 (2010) 119.
[80] S. Wang, D. Sun, S. Hata, J. Sakurai, A. Shimokohbe, Sensors and Actuators A: Physical 153/1 (2009) 120.
[81] B.R. Huang, T.C. Lin, J.P. Chu, Y.C. Chen, Carbon 50/4 (2012) 1619.
[82] P.H. Tsai, J.B. Li, Y.Z. Chang, H.C. Lin, J.S.C. Jang, J.P. Chu, J.W. Lee, P.K. Liaw, Thin Solid Films (2013).
[83] C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, P.K. Liaw, Thin Solid Films (published online).
[84] H.K. Lin, S.M. Chiu, T.P. Cho, J.C. Huang, Materials Letters 113/0 (2013) 182.
[85] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Acta Materialia 60/6-7 (2012) 3226.
[86] H. Fujii, H. Nakae, K. Okada, Metallurgical Transactions A 24/6 (1993) 1391.
[87] E. Saiz, C.W. Hwang, K. Suganuma, A.P. Tomsia, Acta Materialia 51/11 (2003) 3185.
[88] A. Contreras, E. Bedolla, R. Perez, Acta Materialia 52/4 (2004) 985.
[89] J.C. Ambrose, M.G. Nicholas, A.M. Stoneham, Acta Metallurgica et Materialia 40/10 (1992) 2483.
[90] G.F. Ma, H.F. Zhang, H. Li, Z.Q. Hu, Materials Letters 63/18-19 (2009) 1605.
[91] Q.G. Xu, H.F. Zhang, B.Z. Ding, Z.Q. Hu, Materials Letters 56/3 (2002) 137.
[92] J.P. Chu, T. Mahalingam, S.F. Wang, Journal of Physics: Condensed Matter 16/4 (2004) 561.
[93] K. Barmak, C. Cabral, K.P. Rodbell, J.M.E. Harper, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 24/6 (2006) 2485.
[94] J.P. Chu, C.H. Lin, V.S. John, Applied Physics Letters 91/13 (2007) 132109.
[95] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), William Andrew Publishing, Boston, 2010, p. 1.
[96] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), William Andrew Publishing, Boston, 2010, p. 237.
[97] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), William Andrew Publishing, Boston, 2010, p. 195.
[98] H. Yinlun, H.L. Helen, Encyclopedia of Chemical Processing, vol. null, Taylor & Francis, 2007, p. 839.
[99] M.G. Cho, S.K. Kang, D.Y. Shih, H.M. Lee, Journal of Electronic Materials 36/11 (2007) 1501.
[100] A. Paul, A.A. Kodentsov, F.J.J. Van Loo, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques 95/10 (2004) 913.
[101] J. Yu, J.Y. Kim, Acta Materialia 56/19 (2008) 5514.
[102] K.N. Tu, Solder joint technology, Springer, 2007.
[103] K. Barmak, A. Gungor, A.D. Rollett, C. Cabral Jr, J.M.E. Harper, Materials Science in Semiconductor Processing 6/4 (2003) 175.
[104] M. Saito, H. Sasaki, K. Katou, T. Toba, T. Homma, Journal of The Electrochemical Society 156/5 (2009) E86.
[105] J.B. LeBret, M.G. Norton, Journal of Materials Research 18/03 (2003) 585.
[106] Y. Zhang, S.S. Ang, A.A.O. Tay, D. Xu, E.T. Kang, K.G. Neoh, L.P. Chong, A.C.H. Huan, Langmuir 19/17 (2003) 6802.
[107] M.E. Williams, K.W. Moon, W.J. Boettinger, D. Josell, A.D. Deal, Journal of Electronic Materials 36/3 (2007) 214.
[108] L.A. Pinol, J. Melngailis, H.K. Charles, D.M. Lee, R. Deacon, G. Coles, G. Clatterbaugh, Components, Packaging and Manufacturing Technology, IEEE Transactions on 1/12 (2011) 2028.
[109] Y.W. Yen, C.K. Li, M.Y. Tsou, P.S. Shao, Japanese Journal of Applied Physics 50/1 PART 3 (2011).
[110] A. Skwarek, M. Pluska, J. Ratajczak, A. Czerwinski, K. Witek, D. Szwagierczak, Materials Science and Engineering: B 176/4 (2011) 352.
[111] K. Suganuma, A. Baated, K.S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, T. Yamada, Acta Materialia 59/19 (2011) 7255.
[112] J.W. Shin, E. Chason, Journal of Materials Research 24/4 (2009) 1522.
[113] C. Xu, Y. Zhang, C. Fan, J.A. Abys, IEEE Transactions on Electronics Packaging Manufacturing 28/1 (2005) 31.

QR CODE