簡易檢索 / 詳目顯示

研究生: 廖文晢
Wen-Che Liao
論文名稱: 金屬玻璃鍍層應用於病理切片刀及刺青針之性能提升研究
ffects of Thin-film Metallic Glass Coatings on the Performance of Microtome blades and Tattoo needles
指導教授: 朱瑾
Jinn P. Chu
口試委員: 黃仁勇
Ren-Yeong Huang
曾元生
Yuan-Sheng Tseng
姚栢文
Pak-Man Yiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 120
中文關鍵詞: 病理切片刀刺青針具金屬玻璃鍍層
外文關鍵詞: Microtome blades, Tattoo needles, TFMG
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 致謝 I 摘要 II Abstract III Contents IV List of Figures VII List of Tables XI Chapter 1. Introduction 1 1.1 An overview of thin film metallic glass 1 1.2 Motivation and Objectives 1 Chapter 2. Literature Review and Background 2 2.1 Introduction of Microtome Blade 2 2.1.1 Classification of Microtome Blade 2 2.2 Introduction of Tattoo 3 2.2.1 Stages of Tattoo Healing Process 6 2.2.2 Classification of tattoo needle 7 2.2.3 Tattoo needle issue 8 2.3 Metallic Glass 8 2.3.1 Adhesion and hardness characteristic 9 2.4 Thin Film Metallic Glass (TFMG): Characteristic and Fabrication 12 2.4.1 Lower Coefficient of Friction (CoF) 13 2.4.2 Biocompatibility and Antibacterial application 15 2.4.3 Sharpness and Durability Improvement 17 2.5 High power impulse magnetron sputtering (HiPIMS) 19 Chapter 3. Experimental Procedures 20 3.1 Sample Preparation 21 3.1.1 Microtome Blade Preparation 21 3.1.2 Polymer composition analysis (Raman Spectroscope) 21 3.1.3 Tattoo Needle Preparation 21 3.1.4 Polishing and Grinding of AISI-314 Stainless Steel Plates 22 3.1.5 Thin Film Metallic Glass (TFMG) Deposition 22 3.2 Characterizations of TFMG 24 3.2.1 Crystallographic analysis 24 3.2.2 Microstructure analysis 24 3.2.3 Chemical Composition Analysis (EPMA) 25 3.2.4 Hardness measurement (Nanoindentation system) 25 3.2.5 Surface Roughness Observation (Grinding and polishing machine) 25 3.2.6 Hydrophobic property (Contact angle) 26 3.3 Characterizations of Tattoo Needle and Machine 26 3.3.1 Surface Roughness Analysis of Tattoo Needle (confocal microscopy) 27 3.4 Cutting and Insertion Tests (MTS) 27 3.4.1 Test Material: Pork muscle and pork skin 28 3.4.2 Surface Morphology Observation of Pork skin (confocal microscopy) 29 3.4.3 Condition of Pigment coloring (Image J) 29 3.4.4 Cell adhesion Observation of Tattoo Needle (Fluorescent microscope) 29 3.5 Animal Tests 31 3.5.1 Animal Preparations 31 3.5.2 Condition of Pigment coloring 32 3.5.3 Histopathology analysis 32 Chapter 4. Results and Discussion 33 4.1 TFMG deposition 33 4.1.1 Crystallographic Analysis (XRD) 33 4.1.2 Chemical Composition Analysis (EPMA) 34 4.1.3 Surface Hardness Analysis ((Nanoindentation system) 34 4.1.4 Hydrophobic property (Contact angle) 35 4.2 Influences of Microtome blade Characteristics 36 4.2.1 Cutting Test Result against Pork– Microtome blade 37 4.3 Influences of Tattoo Needle Characteristics 43 4.3.1 Hydrophobic property (Contact angle) 43 4.3.2 Surface Roughness 45 4.3.3 Results of Insertion Test - Needle Sample: RL30 5-Needles 47 4.3.3.1 Needle-Body Observation (Adhesion area analysis-SEM) 49 4.3.4 Results of Insertion Test - Needle Sample: RL30 9-Needles 53 4.3.4.1 Needle-Body Observation (Adhesion area analysis-SEM) 56 4.4 Influences of Pork Skin Characteristics 59 4.4.1 Pork skin Wound analysis 67 4.4.2 Pigment coloring condition 67 4.5 Animal Test 70 4.5.1 Condition of Pigment coloring 70 4.5.2 Pathological Histology observation 85 4.5.2.1 Condition of Wound healing 99 4.5.2.2 Tattoo pigment distribution 100 4.5.2.3 Allergic reactions in animal test 100 4.6 Discussion 101 Chapter 5. Conclusions 103 References 104

    [1] F. Mohammed, A. Thapasum Fairozekhan, S. Mohamed, Microtomes and Microtome Knives – A Review and Proposed Classification, Annal Dent Univ Malaya 19 (2012) 43-50.
    [2] H. Gärtner, S. Lucchinetti, F.H. Schweingruber, New perspectives for wood anatomical analysis in dendrosciences: The GSL1-microtome, Dendrochronologia 32(1) (2014) 47-51.
    [3] A. Igersheim, O. Cichocki, A simple method for microtome sectioning of prehistoric charcoal specimens, embedded in 2-hydroxyethyl methacrylate (HEMA), Review of Palaeobotany and Palynology 92(3) (1996) 389-393.
    [4] F. Tomoyukii, Application of the "Nt-Cutter" Knife Blade to Microtome Sectioning of Wood, IAWA Journal 24(3) (2003) 241-245.
    [5] L. FEATHER Safety Razor Co., Histology_&_Pathology, 2018. https://www.feather.co.jp/en/pdf/m_Products/Histology_&_Pathology180906.pdf.
    [6] D.D. Knives, TUNGSTEN CARBIDE KNIVES. http://www.ddk.com/tungsten-carbide-knives.php.
    [7] S. Supplies, Microtome Knife Glass Strips. https://www.2spi.com/category/microtome/.
    [8] K. Henkel, Das Schneiden mit dem Mikrotom, 2006. https://www.klaus-henkel.de/cut-mikrotom.html. (Accessed 15 February 2009).
    [9] D. HUNTER, History & Origin of Tattoos, 2020. https://authoritytattoo.com/history-of-tattoos/#tab-con-4.
    [10] N.C.o.S. Legislatures, Tattooing and Body Piercing | State Laws, Statutes and Regulations, 2018. https://www.ncsl.org/research/health/tattooing-and-body-piercing.aspx.
    [11] P. Paola, P. Sazan, C. Laura, B. Ivana, S. Chiara, Safety of tattoos and permanent make-up: Final report, 2016. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/safety-tattoos-and-permanent-make-final-report.
    [12] B. Battistini, F. Petrucci, I. De Angelis, C.M. Failla, B. Bocca, Quantitative analysis of metals and metal-based nano- and submicron-particles in tattoo inks, Chemosphere 245 (2020) 125667.
    [13] B.G. Brady, H. Gold, E.A. Leger, M.C. Leger, Self-reported adverse tattoo reactions: a New York City Central Park study, Contact Dermatitis 73(2) (2015) 91-99.
    [14] I. Schreiver, B. Hesse, C. Seim, H. Castillo-Michel, J. Villanova, P. Laux, N. Dreiack, R. Penning, R. Tucoulou, M. Cotte, A. Luch, Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin, Sci Rep 7(1) (2017) 11395.
    [15] J. Serup, K. Hutton Carlsen, M. Sepehri, Tattoo Complaints and Complications: Diagnosis and Clinical Spectrum, Current Problems in Dermatology 48 (2015) 48-60.
    [16] N. Kluger, Cutaneous complications related to permanent decorative tattoing, Expert review of clinical immunology 6 (2010) 363-71.
    [17] N. Desai, M. Smith, Body art in adolescents: paint, piercings, and perils, Adolescent medicine: state of the art reviews 22 (2011) 97-118, viii.
    [18] S. Wenzel, I. Rittmann, M. Landthaler, W. Bäumler, Adverse Reactions after Tattooing: Review of the Literature and Comparison to Results of a Survey, Dermatology (Basel, Switzerland) 226 (2013).
    [19] L. Krutak, Tattoo Traditions of Native North America: Ancient and Contemporary Expressions of Identity, 2014.
    [20] A.A. Meesters, M.A. De Rie, A. Wolkerstorfer, Generalized eczematous reaction after fractional carbon dioxide laser therapy for tattoo allergy, Journal of Cosmetic and Laser Therapy 18(8) (2016) 456-458.
    [21] J. Serup, M. Sepehri, K. Hutton Carlsen, Classification of Tattoo Complications in a Hospital Material of 493 Adverse Events, Dermatology 232(6) (2016) 668-678.
    [22] J.V. Veasey, A.L.N. Erthal, R.F. Lellis, In vivo and ex vivo dermoscopy of lesions from implantation of human papillomavirus in tattoos: report of two cases, Anais Brasileiros de Dermatologia 95(1) (2020) 78-81.
    [23] N. Kluger, V. Koljonen, Tattoos, inks, and cancer, The Lancet Oncology 13(4) (2012) e161-e168.
    [24] T. Høgsberg, D. Saunte, N. Frimodt-Møller, J. Serup, Microbial status and product labelling of 58 original tattoo inks, Journal of the European Academy of Dermatology and Venereology : JEADV 27 (2011).
    [25] F.J. Pick, Vierteljahresschrift Für Dermatologie Und Syphilis, 1888, Vol. 20 (Classic Reprint), Fb&c Limited2018.
    [26] Stages of Tattoo Healing Process. https://www.menshairstylesnow.com/tattoo-healing-process/.
    [27] Tattoo Healing Process and Stages, 2019. https://t2conline.com/tattoo-healing-process-and-stages/.
    [28] G. Gallagher, How Tattoos Heal, 2019. https://www.healthline.com/health/tattoo-healing-process.
    [29] laura, Tattoo Needles & Codes, 2014. https://info.painfulpleasures.com/help-center/tattoo-information/tattoo-needles-codes.
    [30] W. Klement, R.H. Willens, P. Duwez, NON-CRYSTALLINE STRUCTURE IN SOLIDIFIED GOLD-SILICON ALLOYS, Nature 187(4740) (1960) 869-870.
    [31] M.M. Khan, A. Nemati, Z. Ur rahman, U. Shah, H. Asgar, W. Haider, Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review, Critical Reviews in Solid State and Material Sciences 43 (2018).
    [32] M. Chen, A brief overview of bulk metallic glasses, NPG Asia Materials 3(9) (2011) 82-90.
    [33] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports 44(2) (2004) 45-89.
    [34] I. Ida, M. Seiryu, N. Takeshita, M. Iwasaki, Y. Yokoyama, Y. Tsutsumi, E. Ikeda, S. Sasaki, S. Miyashita, S. Sasaki, T. Fukunaga, T. Deguchi, T. Takano-Yamamoto, Biosafety, stability, and osteogenic activity of novel implants made of Zr70Ni16Cu6Al8 bulk metallic glass for biomedical application, Acta Biomater. 74 (2018) 505-517.
    [35] J. Chen, S.J. Bull, Approaches to investigate delamination and interfacial toughness in coated systems: an overview, Journal of Physics D: Applied Physics 44(3) (2010) 034001.
    [36] A.A. Volinsky, N.R. Moody, W.W. Gerberich, Interfacial toughness measurements for thin films on substrates, Acta Materialia 50(3) (2002) 441-466.
    [37] K.L. Mittal, The role of the interface in adhesion phenomena, Polymer Engineering & Science 17(7) (1977) 467-473.
    [38] B. Völker, W. Heinz, K. Matoy, R. Roth, J.M. Batke, T. Schöberl, M.J. Cordill, G. Dehm, Mechanical and chemical investigation of the interface between tungsten-based metallizations and annealed borophosphosilicate glass, Thin Solid Films 583 (2015) 170-176.
    [39] Q. Ma, A four-point bending technique for studying subcritical crack growth in thin films and at interfaces, Journal of Materials Research 12(3) (1997) 840-845.
    [40] G. Parry, J.-Y. Faou, S. Grachev, E. Barthel, Towards interface toughness measurement in nanometric films, 13th International Conference on Fracture 2013, ICF 2013 6 (2013) 4836-4841.
    [41] A. Roshangias, R. Pelzer, G. Khatibi, J. Steinbrenner, Thickness dependency of adhesion properties of TiW thin films, 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), 2014, pp. 192-195.
    [42] M.J. Cordill, D.F. Bahr, N.R. Moody, W.W. Gerberich, Adhesion measurements using telephone cord buckles, Materials Science and Engineering: A 443(1) (2007) 150-155.
    [43] A. Kleinbichler, M.J. Pfeifenberger, J. Zechner, N.R. Moody, D.F. Bahr, M.J. Cordill, New Insights into Nanoindentation-Based Adhesion Testing, JOM 69(11) (2017) 2237-2245.
    [44] M. Cordill, D. Bahr, N. Moody, W. Gerberich, Recent Developments in Thin Film Adhesion Measurement, Device and Materials Reliability, IEEE Transactions on 4 (2004) 163-168.
    [45] S.J. Bull, E.G. Berasetegui, An overview of the potential of quantitative coating adhesion measurement by scratch testing, Tribology International 39(2) (2006) 99-114.
    [46] G. Covarel, B. Bensaid, X. Boddaert, S. Giljean, P. Benaben, P. Louis, Characterization of organic ultra-thin film adhesion on flexible substrate using scratch test technique, Surface and Coatings Technology 211 (2012) 138-142.
    [47] X. Jiang, J. Wang, J. Shen, R. Li, G. Yang, H. Huang, Improvement of adhesion strength and scratch resistance of fluorocarbon thin films by cryogenic treatment, Applied Surface Science 288 (2014) 44-50.
    [48] A. Kleinbichler, M.J. Pfeifenberger, J. Zechner, S. Wöhlert, M.J. Cordill, Scratch induced thin film buckling for quantitative adhesion measurements, Materials & Design 155 (2018) 203-211.
    [49] U. Barajas-Valdes, O.M. Suárez, Nanomechanical properties of thin films manufactured via magnetron sputtering from pure aluminum and aluminum-boron targets, Thin Solid Films 693 (2020) 137670.
    [50] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7(6) (1992) 1564-1583.
    [51] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19(1) (2004) 3-20.
    [52] J. Hay, B. Crawford, Measuring substrate-independent modulus of thin films, Journal of Materials Research 26(6) (2011) 727-738.
    [53] T.K. Adelakin, O.M. Suárez, Study of Boride-Reinforced Aluminum Matrix Composites Produced via Centrifugal Casting, Materials and Manufacturing Processes 26(2) (2011) 338-345.
    [54] J. Jakes, D. Stone, The edge effect in nanoindentation, Philosophical Magazine 91 (2011) 1387-1399.
    [55] A. Reyna-Valencia, S. Kaliaguine, M. Bousmina, Structural and mechanical characterization of poly(ether ether ketone) (PEEK) and sulfonated PEEK films: Effects of thermal history, sulfonation, and preparation conditions, Journal of Applied Polymer Science 99 (2006) 756-774.
    [56] S.J. Vachhani, R.D. Doherty, S.R. Kalidindi, Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation, Acta Materialia 61(10) (2013) 3744-3751.
    [57] D. Beegan, S. Chowdhury, M.T. Laugier, A nanoindentation study of copper films on oxidised silicon substrates, Surface and Coatings Technology 176(1) (2003) 124-130.
    [58] C.-H. Chen, H.-E. Huang, Characteristics of Sputtered AlSc and Al-Nd Alloy Thin Films for use in Liquid Crystal Display, Materials Transactions - MATER TRANS 46 (2005) 1413-1416.
    [59] S. Chen, L. Liu, T. Wang, Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations, Surface and Coatings Technology 191(1) (2005) 25-32.
    [60] M.A.G. Maneiro, J. Rodríguez, Pile-up effect on nanoindentation tests with spherical–conical tips, Scripta Materialia 52(7) (2005) 593-598.
    [61] D. Beegan, S. Chowdhury, M.T. Laugier, Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates, Surface and Coatings Technology 201(12) (2007) 5804-5808.
    [62] H.L. Jia, F.X. Liu, Z.N. An, W.D. Li, G.Y. Wang, J.P. Chu, J.S.C. Jang, Y.F. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films 561 (2014) 2-27.
    [63] J.P. Chu, C.C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.L. Shen, Non-stick syringe needles: Beneficial effects of thin film metallic glass coating, Sci Rep 6 (2016) 7.
    [64] L. Huang, C. Pu, R. Fisher, D. Mountain, Y. Gao, P. Liaw, W. Zhang, W. He, A Zr-based Bulk Metallic Glass for Future Stent Applications: Materials Properties, Finite Element Modeling, and In Vitro Human Vascular Cell Response, Acta Biomater. 25 (2015).
    [65] H. Li, Y. Zheng, Recent Advances in Bulk Metallic Glasses for Biomedical Applications, Acta Biomater. 36 (2016).
    [66] J. Schroers, G. Kumar, T. Hodges, S. Chan, T. Kyriakides, Bulk metallic glasses for biomedical applications, JOM 61 (2009) 21-29.
    [67] J.P. Chu, T.Y. Liu, C.L. Li, C.H. Wang, J.S.C. Jang, M.J. Chen, S.H. Chang, W.C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films 561 (2014) 102-107.
    [68] C.N. Cai, C. Zhang, Y.S. Sun, H.H. Huang, C. Yang, L. Liu, ZrCuFeAlAg thin film metallic glass for potential dental applications, Intermetallics 86 (2017) 80-87.
    [69] E.S. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, H. Soliman, Roughness parameters, Journal of Materials Processing Technology 123 (2002) 133-145.
    [70] Y. Chugui, The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009), Measurement Science and Technology 21(5) (2010) 050101.
    [71] W.C. Russell, C. Newman, D.H. Williamson, A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses, Nature 253(5491) (1975) 461-462.
    [72] B. Chazotte, Labeling nuclear DNA using DAPI, Cold Spring Harbor protocols 2011 (2011) pdb.prot5556.

    無法下載圖示 全文公開日期 2025/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE