簡易檢索 / 詳目顯示

研究生: 彭智群
JR-CHIUN PENG
論文名稱: 同心式電液動力泵之實驗研究
Experimental Study of the Concentric-Ring Electrohydrodynamic Pump
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 向四海
Su - Hai Hsiang
黃緒哲
Shiuh-Jer Huang
陳呈芳
nono
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 電液動力泵離子風同心圓式配置電極數電極徑向距離
外文關鍵詞: electrohydrodynamic pump, corona wind, concentric-ring arrangement, discharge electrodes, radial distance
相關次數: 點閱:208下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文目標為電液動力泵(Electrohydrodynamic Pump;EHD泵)之性能增強研究,首先對EHD泵之研究文獻進行回顧,並選定Birhane之EHD泵設計作為參考模型,藉此模型的實驗分析以了解電暈效應。經實測模型之流速曲線,結果符合文獻之反向拋物線速度分布,越接近管壁其速度越大、往管中心內速度越小。接著依據風速產生於電極之特性進行圓管式EHD泵之改良設計,對發射電極配置進行研究,其設計參數為於內圈增設發射電極(總數分別為12與16根),及調整新增電極的徑向距離(15與20mm);至於發射電極採用同心圓式環狀陣列,並透過性能實驗結果分析電暈物理現象。經由分析所有改良EHD泵發現,增加發射電極所提升之電場作用力,不會因電極數上升使消耗功率增加,同時觀察出增加電極數可使EHD泵之流量增加。至於電極間距部分,由實驗得知電極間距會影響離子作用力,可使體積流率進一步提升;但發射電極密度過高時,容易使電場作用彼此牽制,導致體積流率受到限制。綜合歸納本文之改良方案,皆能使EHD泵之流率提升33%、消耗功率降低35%以上;其中較佳設計之EHD泵模型2012,其體積流率提升74%、且消耗功率降低35.9%。本研究進行的設計參數實驗,除了提升EHD泵之體積流率,並且觀察電暈之物理現象,可供未來研究EHD泵或相關領域參考。

關鍵詞:電液動力泵、離子風、同心圓式配置、電極數、電極徑向距離


The aim of this experimental work was to enhance the flow-induced capability of the electrohydrodynamic (EHD) pumps, also known as EHD-driven Ironic gas pumps. Before starting the experiments, we first conducted the literature survey upon EHD research and chose Birhane’s EHD pump as reference design. The performance experiment with that design was executed and analyzed the test data to better understand the corona effect. Results showed that in a flow induced by such a pump, the velocity distribution presented an inverted parabolic trend, increasing near the pipe wall and decreasing towards the center of the tube to the lowest point. Thereafter, this research proposed a concentric-ring array of emitter electrodes for enhancing the airflow of the EHD pump. Based on the characteristics of ironic air generated around the downstream of discharge electrode, the parametric focus on improving the circle EHD pump design was mainly on discussing various placements of the emitter electrodes, such as the electrode number and the radial distance between adjacent electrode layers. The total number of emitter electrodes considered here are 12 and 16, and the radial distance of emitter electrodes are 15mm and 20mm, respectively.
Through the experiments of this concentric-ring EHD pump, it is found that increasing the amount of emitter electrodes enhances the electric field force, and therefore the EHD volumetric flow rate, without increasing the power consumption. Regarding the electrode distances, measured results showed that electrode distance affects the plasma force significantly, and can be adjusted to improve the volumetric flow rate, but if the emitter electrodes are too crowded, electric fields induced by different electrodes tend to impede each other, resulting in a reduced volumetric flow rate. In conclusion, for all the proposed concentric-ring EHD designs, this experimental investigation enlarges over 33% of volumetric flow rate and reduces over 35% of power consumption compared to the reference EHD pump. In the best model, with 12 electrodes separated by a 20mm radial distance, the enhancement on volumetric flow rate is over 74% and reduction of power consumption over 35.9 %. Consequently, this research has successfully designed a superior EHD with the concentric-ring arrangement of emitter electrodes, and executed a parametric study that not only improved the volumetric flow rate of EHD pumps, but also allowed further observation of the physical phenomena of corona effect, and can provide insights to pertinent research in the future.

Key words:electrohydrodynamic pump, corona wind, concentric-ring arrangement, discharge electrodes, radial distance

摘要 I Abstract II 目錄 IV 圖索引 VII 表索引 IX 符號索引 X 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 6 1.2.1 電暈效應之應用 6 1.2.2 EHD泵之放電特性與針腳設置 8 1.3 研究動機與方法 10 第二章 EHD理論介紹 16 2.1 EHD概論 16 2.2 基本假設與統御方程式 18 2.2.1 流場統御方程式 19 2.2.2 電磁統御方程式 22 2.2.3 電磁流體力學 24 2.3 電暈物理現象 25 2.3.1 離子相互作用 25 2.3.2 氣體放電分類 28 2.3.3 電暈風作用 32 第三章 EHD泵之性能測試實驗平台 36 3.1 量測儀器說明 36 3.2 實驗量測方式 46 3.3 實驗數值量化之統計方法 51 3.3.1 統計量數 51 3.3.2 常態分佈 54 第四章 EHD泵之模型性能增強設計 57 4.1 模型設計說明 60 4.1.1 參考EHD泵之模型 60 4.1.2 同心圓式EHD泵 63 4.2 參考EHD泵之性能實驗與討論 66 4.3 同心圓式EHD泵之性能實驗與討論 72 4.3.1 同心圓式EHD泵設計I 72 4.3.2 同心圓式EHD泵設計II 83 4.4 整合EHD泵性模型之實驗性能數據分析 86 第五章 結論與建議 91 5.1 結論 91 5.2 未來建議 93 參考文獻 95

[1]Jewell-Larsen, N. E., Ran, H., Zhang, Y., and Schwiebert, M. K., “Electrohydrodynamic (EHD) Cooled Laptop,” Semiconductor Thermal Measurement and Management Symposium, pp. 261-266, 2009.

[2]謝維哲,“以EHD技術增強熱傳研究”,國立清華大學碩士論文,2008年。
[3]Lai, F. C. and Sharma, R. K., “EHD-Enhanced Drying with Multiple Needle Electrode,” Journal of Electrostatics, Vol. 63, No. 3-4, pp. 223-237, 2005.
[4]Cao, Wei, Nishiyama, Y., and Koide, S., “Electrohydrodynamic Drying Characteristics of Wheat Using High Voltage Electrostatic Field,” Journal of Food Engineering, Vol. 62, No. 3, pp. 209-213, 2004.
[5]Basiry, M. and Esehaghbeygi, A., “Electrohydrodynamic (EHD) Drying of Rapeseed (Brassica Napus L.),” Journal of Electrostatics, Vol. 68, No. 4, pp. 360-363, 2010.
[6]Leger, L., Moreau, E., and Touchard, G. G., “Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate,” IEEE Transactions on Industry Applications, Vol. 38, No. 6, pp. 1478-1485, 2002.
[7]Moreau, E., Léger, L., and Touchard, G., “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25 m/s,” Journal of Electrostatics, Vol. 64, No. 3–4, pp. 215-225, 2006.
[8]Hauksbee, F., “Physico-Mechnical Experiments on Various Subjects,” 1st Ed., London, pp. 46-47, 1719.
[9]Stuetzer, O. M., “Ion Drag Pressure Generation,” Journal of Applied Physics, Vol. 30, No. 7, pp. 984-997, 1959.
[10]Obrien, R. J. and Shine, A. J., “Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection,” Journal of Heat Transfer, Vol. 89, pp. 114-116, 1967.
[11]Ohadi, M. M., Nelson, D. A., and Zia, S., “Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge,” International Journal of Heat and Mass, Vol. 34, No. 4-5, pp. 1175-1187, 1991.
[12]Mazumder, A. K. M. M. H. and Lai, F. C., “Two-Stage Electrohydrodynamic Gas Pump in a Square Channel,” Proc. ESA Annual Meeting on Electrostatics, 2011.
[13]Zhang, J. and Lai, F. C., “Effect of Emitting Electrode Number on the Performance of EHD Gas Pump in a Rectangular Channel,” Journal of Electrostatics, Vol. 69, No. 6, pp. 486-493, 2011.
[14]Conanan, G. D. and Lai, F. C. “Performance Enhancement of Two- Stage Corona Wind Generator in a Circular Pipe,” Proc. Joint Electrostatics Conference, 2012.
[15]Birhane, Y. T., “Performance of Electrohydrodynamic Gas Pump and Heat Transfer Enhancement in Circular Tubes”,國立台灣科技大學博士論文, 2015.
[16]Robinson, M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical and Electronic Engineers, Vol. 80, No. 2, pp. 143-150, 1961.
[17]Bhattacharyya, S. and Peterson, A., “Corona Wind-Augmented Natural Convection-Part: Single Electrode Studies,” Journal of Enhancement Heat Transfer, Vol. 9, No. 5-6, pp. 209-219, 2002.
[18]Matthew, R., Derek, D. R., Felix, W., and Fred, C., “Characterization of Ionic Wind Velocity,” Journal of Electrostatics, Vol. 63, No. 6-10, pp. 711-716, 2005.
[19]Brown, N. M. and Lai, F. C., “Electrohydrodynamic Gas Pump in a Vertical Tube,” Journal of Electrostatics, Vol. 67, No. 4, pp. 709-714, 2009.
[20]Wei, Q., Lingzhi, X., Xiaoya, T., and Lanjun, Y., “The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air,” IEEE Transactions on Plasma Science, Vol. 38, No. 10, pp. 2848-2853, 2010.
[21]鄭福田,“微粒導論”,國立編譯館,1990年。
[22]Chang, J. S., Lawlwss, P. A., and Yamamoto, T., “Corona Discharge Processes,” IEEE Transactions on Plasma Science, Vol. 19, No. 6, pp. 1152-1166, 1991.
[23]Chapman, B., “Glow Discharge Processes: Sputtering and Plasma Etching,” New York, John Wiley and Sons, 1980.
[24]路乘風、崔政斌,“防塵防毒技術”,化學工業出版社,2004。
[25]楊超棨,“介電質常壓電漿產生器之開發及其於質譜分析之應用”,國立中山大學碩士論文,2010年。
[26]徐學基、褚定昌,“氣體放電物理”,復旦大學出版社,1996年。
[27]Kalman, H. and Sher, E., “Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly,” Applied Thermal Engineering, Vol. 21, No. 3, pp. 265-282, 2001.
[28]Yabe, A., Mori, Y., and Hijikata, K., “EHD Study of the Corona Wind between Wire and Plate Electrodes,” AIAA Journal, Vol. 16, No. 4, pp. 340-345, 1978.
[29]Moreau, E. and Touchard, G., “Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges,” Journal of Electrostatics, Vol. 66, No. 1-2, pp. 39-44, 2008.
[30]Huang, R. T., Sheu, W. J., and Wang, C. C., “Heat Transfer Enhancement by Needle-Arrayed Electrodes – an EHD Integrated Cooling System,” Energy Conversion and Management, Vol. 50, No. 7, pp. 1789-1796, 2009.
[31]蔡朝洋,“電子學實驗”,全華科技,2002年。

QR CODE