簡易檢索 / 詳目顯示

研究生: 吳致頤
Chih-Yi Wu
論文名稱: 非對稱電極應用於兩級雙面之方管EHD泵的實驗研究
Experimental Study of Two-Stage EHD Pump in Square Channel with Asymmetric Electrodes Mounted on Two Parallel Walls
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
楊旭光
Shiuh-Kuang Yang
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 197
中文關鍵詞: 電液動泵離子風電流體力學電暈風
外文關鍵詞: EHD pump, Ion wind, Electrohydrodynamic, Gas pumping, Corona discharge, Corona wind
相關次數: 點閱:152下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討雙級電液動力泵(Electrohydrodynamic Pump) 配置不同電極模組及其排列方式,於單/雙級方管電液動泵的放電特性、流場型態和能源效率之影響,選定之EHD參考模型包括Zhang之單級EHD泵、Mazumder之雙級EHD泵及Tien之非對稱型單/雙級EHD泵;在維持與參考模型外部尺寸後,接著改變EHD之電極模組配置方式,藉實驗進行完整的性能測試和討論分析,並將其與參考模型之特性做比較。本研究改變電極安組方式使用雙面型電極配置,探討之設計參數為1、3、7根電極模組,而雙級EHD泵之電極模組排列方式採用同面式安裝方式。彙整分析實驗結果後發現,隨著操作電壓的增加電場作用力也提升,離子風速也提高進而提升流量,但是電壓越高所能提升的風速與流量越少最終趨緩於定值;另外,當放電電極為7根時電極彼此間距過近,過於密集的電極會使電場彼此互相影響導致體積流率降低,但是多根電極所產生的風速分佈較為平均,可藉著雙級模型的氣流延續、風速加速之特性以增加流量。
    至於在速度場部分,單根電極所產生的風速區集中在電極正下方,其中1根電極模組之單級雙面EHD泵於電壓30kV產生最佳流量為12.15CFM;而3根電極所產生之風速區會如梯形般往外擴散,7根電極則會產生最寬廣之風速區,但因互相干擾而風速較低。至於雙級同面式EHD泵方面,電極同面配置使上級產生之氣流得以延續,在上級低風速時會有明顯的加成效果;最高流量出現在3根電極模組上下級電壓皆為28kV,時其流量為20.29CFM。至於效率表現部分,效率與操作電壓成反比,其中單級EHD泵以1根電極模組的效率最高,且1根電極模組在24kV時所產生之17.78CFM/W為最佳;而雙級EHD泵在低電壓下效率表現較好,在上下級電壓皆24kV時,效率甚至會高於單級模型,而雙級3根電極配置能夠產生所有實驗組合中之最佳效率(26.09CFM/W)。與雙級參考模型相比,同面式雙面模型能產生單面式模型之兩倍流量,且能源效率十分接近;而與四面模型相比,同面式雙面模型之流量僅略低於四面模型,但能源效率有較大增幅,因此同面式雙面設計能在流量和效率取得較佳的平衡,可增加EHD泵在散熱方面之實用性。


    This experimental study investigates the discharge features of the square channel electrohydrodynamic (EHD) gas pump with different electrode modules and arrangements. In this EHD pump, the electrodes are flush mounted on two parallel walls and powered by DC voltages ranging from 24 kV to 30 kV. Also, the two-stage EHD model is designed with aligned electrodes to increase the flow rate and extend over a longer channel length. Besides, three electrode modules considered here are 1, 3, and 7 electrode modules. The measured EHD characteristics include flow pattern, discharge flow rate, and energy efficiency factor, which is defined as the volume flow rate delivered by a unit power input. After summing up the experimental results, it is found that the ion wind velocity increases to enlarge the flow rate as the operating voltage increase. However, the less growths on velocity and flow rate are induced by the higher voltage. But, the small electrode distance within the 7-electrode module results in the electric-field interference and reduction on the discharge airflow. As for the velocity pattern, the ion wind generated by the single electrode is concentrated directly below the emitting electrode, while the wider distributions are observed for the 3- and 7-electrode modules. Though, the velocity distribution generated by multiple electrodes are relatively uniform, which is favorable to promote flow mixing inside the channel.
    Experimental outcomes also show that the highest flow rate (12.15 CFM) of a single-stage, double-sided EHD pump is recorded in the single electrode module operating at 30 kV. Also, the two-stage, two-wall EHD pump with aligned electrodes enables the airflow generated by the first stage moving to the upstream of the second-stage EHD. It follows that the discharge performance of this two-stage EHD gas pump is enhanced. And, the highest flow rate 20.29 CFM is found for EHD with the 3-electrode module operating at 28 kV in both stages. For all models tested here, the flow rate of the single-wall model is doubled by introducing the two-wall design on EHD pump. Moreover, the power efficiency is inversely proportional to the operating voltage. Among all tests, the single-stage EHD pump has the highest efficiency (17.78CFM/W) with the single-electrode module at 24kV. As the two-stage EHD pump, the test efficiency is even higher than the single-stage model. Two-stage EHD pump with the 3-electrode configuration has the highest efficiency of 26.09 CFM/W. In summary, the two-stage, two-wall model with aligned electrodes can generate twice the flow rate of the single-sided model under the similar power efficiency.
    Regarding the electrode orientations, this work confirms that an EHD gas pump with aligned electrodes can produce a larger volume flow rate than that with offset electrodes. However, the offset arrangement can create more mixing of the flow inside the channel. Also, an EHD gas pump with aligned electrodes can operate at a higher power efficiency than that with offset electrodes. In conclusion, the present results reveal that EHD gas pump has a great potential for applications in the thermal management and can be more energy-efficient when operated with uneven applied voltages.

    第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 電液動泵之電極設置、放電及性能特性 1.2.2 電液動效應之應用 1.3 研究動機與方法 第二章 電液動泵理論介紹 2.1電液動力學概論 2.1.1基本介紹 2.1.2電暈放電機制 2.2物理系統之假設與統御方程式 2.2.1流場統御方程式 2.2.2電磁統御方程式 2.2.3 EHD之驅動力 2.3電液動泵之效能評估參數 第三章 EHD泵之實驗研究平台 3.1 實驗設備與儀器 3.2 實驗量測之平台與流程 3.2.1 實驗平台建立 3.2.2 實驗流程 3.3 實驗數據之量化統計方法 第四章 單級雙面EHD泵之模型設計和性能討論 4.1單級EHD泵之參考模型 4.2 單級雙面型方管EHD泵之模型與對稱性討論 4.2.1單級雙面型EHD泵之模型 4.2.2量測點之對稱性實驗 4.3單級雙面型EHD泵之性能討論 4.3.1 單根放電電極模組 4.3.2 三根放電電極模組 4.3.3 七根放電電極模組 4.3.4 小結 4.4 參考EHD泵與非對稱型EHD泵之性能比較 4.4.1 單級EHD泵之性能結果比較 第五章 雙級同面式雙面EHD泵之模型設計和性能討論 5.1雙級EHD泵之參考模型 5.2雙級同面式雙面型之EHD泵模型 5.3 雙級同面式雙面型之方管EHD泵的結果與討論 5.3.1 單根放電電極模組 5.3.2 三根放電電極模組 5.3.3 七根放電電極模組 5.3.4 小結 5.4 雙級同面式雙面EHD泵和雙級參考EHD泵之特性比較 5.4.1參考研究之雙級EHD模型 5.4.2雙級交錯式雙面的EHD模型 第六章 結論與建議 6.1 結論 6.2 建議

    [1]https://www.techbang.com/posts/10316-first-desk-pen-which-is-set-in-the-world
    [2]謝維哲,"以EHD技術增強熱傳研究",國立清華大學動力機械工程學系碩士論文,2008年。
    [3]H. Kalman and E. Sher, “Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly,” Applied Thermal Engineering, Vol. 21, Issue 3, pp. 265–282, 2001.
    [4]R. T. Huang, W. J. Sheu, and C. C. Wang, “Heat Transfer Enhancement by Needle-Arrayed Electrodes – An EHD Integrated Cooling System,” Energy Conversion and Management, Vol. 50, pp. 1789-1796, 2009.
    [5]M. Molki and P. Damronglerd, "Electrohydrodynamic Enhancement of Heat Transfer for Developing Air Flow in Square Ducts," Heat Transfer Engineering, Vol. 27, No. 1, pp. 35-45, 2006.
    [6]R. Futrzynski, "Drag Reduction Using Plasma Actuators, " Academic Thesis with Permission by Kungliga Tekniska högskolan Royal Institute of Technology, Stockholm, 2015.
    [7]L. Leger, E. Moreau, and G. G. Touchard, "Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate," IEEE Transactions on Industry Applications, Vol. 38, No. 6, pp. 1478-1485, 2002.
    [8]https://flab.eng.isas.jaxa.jp/member/oyama/research_j.html
    [9]A.D. Hosey and H.H. Jones, "Portable Electrostatic Precipitator Operating form 110 Volts AC or 6 Volts DC," Ama Archives of Industrial Hygiene and Occupational Medicine, Vol. 7, No. 1, pp. 49-57, 1953.
    [10]https://processdesign.mccormick.northwestern.edu/index.php/Environmental_concerns
    [11]F. C. Lai and K. W. Lai, "EHD-Enhnaced Drying with a Wire Electrode," Drying Technology, Vol. 20, No. 7, pp. 1393–1405, 2007.
    [12]A. Esehaghbeygi and M. Basiry, "Electrohydrodynamic (EHD) Drying of Tomato Slices," Journal of Food Engineering, Vol. 104, No. 4, pp. 628-631, 2011.
    [13]W. Cao, Y. Nishiyama, and S. Koide, "Electrohydrodynamic Drying Characteristics of Wheat Using High Voltage Electrostatic Field," Journal of Food Engineering, Vol. 62, No. 3, pp. 209-213, 2004.
    [14]M. Basiry and A. Esehaghbeygi, "Electrohydrodynamic (EHD) Drying of Rapeseed (Brassica napus L.)," Journal of Electrostatics, Vol. 68, No. 4, pp. 360-363, 2010.
    [15]N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, and K. A. Honer, "Electrohydrodynamic (EHD) Cooled Laptop," Semiconductor Thermal Measurement and Management Symposium, pp. 261-266, 2009.
    [16]Mounir. Laroussi, "Low-Temperature Plasmas for Medicine," IEEE, Vol. 37, No. 6, pp. 714-725, 2007.
    [17]F. Hauksbee, Physico-Mechanical Experiments on Various Subjects, 1st Ed., Publish by R. Brugis, London, pp. 46-47, 1709.
    [18]O. M. Stuetzer, "Ion Drag Pressure Generation," Journal of Applied Physics, Vol. 30, No. 7, pp. 984-997, 1959.
    [19]M. Robinson, "Movement of Air in the Electric Wind of the Corona Discharge," Research and Development Department Technical Paper, TP60-2, 1961.
    [20]J. R. McDonald, W. B. Smith, and H. W. Spencer, "A Mathematical Model for Calculating Electrical Conditions in Wire-Duct Electrostatic Precipitation Devices," Journal of Applied Physics, Vol. 48, No. 6, pp 2231-2243, 1977.
    [21]L. Fouad and S. Elhazek, "Effect of Humidity on Positive Corona Discharge in a Three System," Journal of Electrostatics, Vol. 35, pp. 21-30, 1995.
    [22]F. C. Lai and R. K. Sharma, "EHD-Enhanced Drying with Multiple Needle Electrode," Journal of Electrostatics, Vol. 63, No. 3-4, pp. 223-237, 2005.
    [23]M. Rickard, D. Dunn-Rankin, F. Weinberg, and F. Carleton, "Characterization of Ionic Wind Velocity," Journal of Electrostatics, Vol. 63, No. 6-10, pp. 711-716, 2005.
    [24]B .Komeili, J. S. Chang, G.D. Harvel, C.Y. Ching, and D. Brocilo, "Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump under Negative Corona Operations," Journal of Electrostatics, Vol. 66, No. 5–6, pp. 342-353, 2008.
    [25]Q. Wei, X. Lingzhi, T. Xiaoya, and Y. Lanjun, "The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air," Plasma Science, IEEE Transactions on Plasma Science, Vol. 38, No. 10, pp. 2848-2853, 2010.
    [26]S. M. Marco and H. R. Velkoff, "Effect of Electrostatic Fields on Free Convection Heat Transfer from Flat Plate," ASME Paper, No. 63-HT-9, 1963.
    [27]M. Robinson, "Convective Heat Transfer at the Surface of a Corona Electrode," J. He. & Mass Transfer, Vol. 13, pp. 263-274, 1970.
    [28]M. E. Franke and L. E. Hogue, "Electrostatic Cooling of a Horizontal Cylinder," ASME Journal of Heat and Transfer, Vol. 34, pp. 544-548, 1991.
    [29]H. Kalman and E. Sher, "Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly," Applied Thermal Engineering, Vol. 21, pp. 265-282, 2001.
    [30]H. Y. Li, R. T. Huang, W. J. Sheu, and C. C. Wang, "EHD Enhanced Heat Transfer with Needle-Arrayed Electrodes," IEEE, Volume 50, Issue 7, pp. 1789-1796, 2009.
    [31]N. M. Brown and F. C. Lai, "Electrohydrodynamic Gas Pump in a Vertical Tube," Journal of Electrostatics, Vol. 67, No. 4, pp. 709-714, 2009.
    [32]J. Zhang and F. C Lai, "Effect of Emitting Electrode Number on the Performance of EHD Gas Pump in a Rectangular Channel," Journal of Electrostatics, Vol. 69, No. 6, pp. 486-493, 2011.
    [33]A. K. M. M. H. Mazumder and F. C. Lai, "Two-Stage Electrohydrodynamic Gas Pump in a Square Channel," Proc. ESA Annual Meeting on Electrostatics, 2011.
    [34]Y. T. Birhane, S. C. Lin, and T. Y. Huang, "Variation of Entrance Length Effect on EHD Gas Pump Performance," Key Engineering Materials, Vol. 649, pp. 1-8, 2015.
    [35]C. P. Tian, S. C. Lin, and F. C. Lai, " Experimental Study of EHD Pump in Square Channel with Asymmetric Electrodes," Journal of Electrostatics, Volume 107, pp.103482, 2019.
    [36]T. Yamamoto, M. Okuda, and M. Okubo, "Three-Dimensional Electrohydrodynamics in Electrostatic Precipitator," Journal of Electrostatics, Volume 69, Issue 5, pp. 419-428, 2011.
    [37]S.C. Lin, Y. J. Chang, C. Y. Wu, and Feng C. Lai, "A Two-Stage EHD Gas Pump in a Square Channel with Electrodes Mounted on Two Opposite Facing Walls," IEEE Industry Applications Society Annual Meeting, Detroit, Oct. 2020.
    [38]E. D. Fylladitakis, M. P. Theodoridis, and A. X. Moronis, " Review on the History, Research, and Applications of Electrohydrodynamics," IEEE Transactions on Plasma Science, Vol. 42, No. 2, pp. 358-375, 2014.
    [39]J. D. Moon, D. H. Hwang, and S. T. Geum, "An EHD Gas Pump Utilizing a Ring/Needle Electrode," IEEE Trans. Dielectr. Electr. Insul., Vol. 16, No. 2, pp. 352-358, 2009.
    [40]A. O. Ong, A. R. Abramson, and N. C. Tien, "Optimized and Microfabricated Ionic Wind Pump Array as a Next Generation Solution for Electronics Cooling Systems," Proc. 13th IEEE Intersoc. Conf. Thermal Thermomech. Phenomena Electron. Syst., pp. 1306-1311, 2012.
    [41]T. K. Zhang, Y. Zhang, Q. Ji, B. Li, and J. Ouyang, "Characteristics and Underlying Physics of Ionic Wind in DC Corona Discharge under Different Polarities," Chinese Physics B, Volume 28, No.7 75202, 2019.
    [42]J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona Discharge Processes," IEEE Transactions on Plasma Science, Volume 19, pp.1152-1166, 1991.

    無法下載圖示
    全文公開日期 2028/05/10 (校外網路)
    全文公開日期 2028/05/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE