簡易檢索 / 詳目顯示

研究生: 張毓容
Yu-Jung Chang
論文名稱: 非對稱電極應用於交錯式雙面配置的兩級方管EHD泵
Asymmetric Electrodes Applied on the Two-Stage Square-Channel EHD Pump with Staggered Arrangement of Two Parallel Walls in Different Stages
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
楊旭光
Shiuh-Kuang Yang
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 206
中文關鍵詞: 電流體力學電液動泵離子風電暈風
外文關鍵詞: Ion wind, EHD pump, Electrohydrodynamic, Corona discharge, Corona wind, Gas pumping
相關次數: 點閱:190下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同電極模組以及其排列方式,在單/雙級方管電液動泵的放電特性、速度分佈和能源效率之影響,首先選用設計參數為1、3、7根電極模組,變動其模型之電極模組配置方式,以實驗方法進行完整的性能測試和討論分析;接著選定Zhang之單級EHD泵、Mazumder之雙級四面EHD泵及Tien之非對稱雙級單面EHD泵作為參考模型,將其與本雙面EHD模型之特性做比較。本EHD泵之電極模組為內嵌壁面式且配置於管內對稱壁面,而雙級EHD的上下級為雙面且安裝於交錯面。實驗結果彙整發現,隨著操作電壓及電極數的增加可使EHD泵之流量增加,雖然進一步增加放電電極可使體積流率再提升,但電極密度過高時使電場彼此互相影響,也導致體積流率之增幅受到限制,且不同根數之電極模組也會影響其風速分佈。
    關於流場型態與流量現象部分,因本單級雙面EHD泵的電極模組安裝於對稱兩面,故兩側風速較高而接近管中央則會降低,其中1根電極模組之單級雙面EHD泵在30kV時產生最佳流量12.15 CFM;而於雙級交錯式雙面EHD泵方面,以7根電極模組於上、下級電壓皆是28kV時,有最佳流量18 CFM。至於能源效率表現部分,效率值與操作電壓之增加成反比,其中單級雙面EHD泵之單根電極模組,在電壓24kV之17.77 CFM/W表現最佳;而雙級EHD泵的1根電極模組,在上級26kV、下級24kV下之18.88 CFM/W表現最佳。綜合來說,雙面交錯式模型相較單面式雙級模型,可在能源效率接近下提升較多流量,且風速覆蓋範圍也較多;而與四面模型相比,流量稍微低於四面模型,但是能源效率卻能夠大幅提升,因此雙面交錯式電極配置在流量與效率可取得較佳的平衡,能強化增加未來EHD泵之應用可能。除此之外,交錯式與同面式之雙面雙級EHD泵的性能相似,電壓提高時能源效率降低,提高電極數則能提高流量;唯兩者之風速分佈有很大的差異,上下級不同面之交錯安裝方式能使空間均勻充滿電暈風,且搭配電極模組的優化選擇可令電暈風覆蓋範圍更增加。


    The effect of electrode arrangement in the single/double stage electrohydrodynamic (EHD) gas pump is experimentally examined for its flow pattern, discharge flow rate, and energy efficiency factor, which is defined as the volume flow rate delivered by a unit power input. In this work, electrode modules of EHD gas pump are flush mounted on two parallel walls, and offset arrangement of electrodes is used in different stages for the double stage EHD pump. Also, the measured EHD characteristics are summarized and compared with other reference EHD pumps equipped with electrodes on one and four walls. According to experimental outcomes, the volume flow rate of the EHD pump can be enlarged with the increase of operating voltages and electrode numbers. However, for a high electrode numbers, the electric fields induced by neighboring electrodes may interfere and restrict the discharge flow rate. In addition, the electrode numbers have significant influence on the velocity pattern, which becomes uniformly distributed for an increasing electrode quantity. Regarding the delivered flow rate, the highest 12.15 CFM is recorded at 30 kV for the single-stage EHD pump with one-electrode module, while an 18.0 CFM is obtained at 28 kV applied on both stages for the two-stage EHD with 7-electrode module. Moreover, this flow rate is roughly the same as the ion stream delivered by the EHD with 4-wall electrodes, and significantly larger than that generated by the EHD with one-wall electrode module.
    Regarding the energy efficiency, EHD pumps with the single-electrode module generate the best energy efficiency factors as 17.7 CFM/W and 18.88 CFM/W at 24 kV for the single stage and at 26 kV/24 kV for the two stages, respectively. As expected, the power efficiency factor for the two-wall EHD models is slightly small than that of the single-wall EHD, and is significantly higher than that of four-wall EHD gas pumps. Hence, two-stage design successfully enlarges the flow rate by a huge 48% enhancement under a similar power efficiency factor as the single-wall EHD. Concerning the flow pattern, the two-stage, two-wall EHD gas pump with offset electrodes yields a much uniform distribution with the highest velocity near the duct walls and the lowest value at the duct center, which is quite different from the uneven velocity pattern produced by the two-stage, one-wall EHD pump. Note that this even flow pattern can create more mixing of the flow inside the channel, which is critical and greatly favorable for the application in the thermal management. In conclusion, the present results confirm that a two-stage, two-wall EHD gas pump with offset electrodes can extend Corona wind over a longer channel length, increase the flow rate, and still have a good power efficiency. Also, EHD gas pump has a great potential on thermal management and can be more energy-efficient when operated with uneven applied voltages.

    摘 要 Abstract 致 謝 目 錄 圖索引 表索引 符號索引 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 電液動泵之電極設置、放電特性及性能特性 1.2.2 電液動效應之應用 1.3 研究動機與方法 第二章 電液動理論介紹 2.1電液動力學概論 2.1.1基本介紹 2.1.2電暈放電 2.2物理系統之假設與統御方程式 2.2.1流場統御方程式 2.2.2電磁統御方程式 2.3 EHD驅動力 2.4 電液動泵之效能參數 第三章 EHD泵之研究實驗平台 3.1 實驗設備與儀器 3.2 實驗量測之平台與流程 3.2.1 實驗平台建立 3.2.2 實驗流程 3.3 實驗數據量化之統計方法 第四章 單級電液動泵之模型性能改變設計 4.1單級EHD泵之參考模型 4.2 單級雙面型EHD泵之模型 4.3 單級雙面方管EHD泵之量測方法、性能與討論 4.3.1 量測點速度之對稱性實驗 4.3.2 單根放電電極模組 4.3.3 三根放電電極模組 4.3.3 七根放電電極模組 4.3.4 小結 4.4 單級雙面和參考單級EHD泵之特性比較 第五章 雙級交錯式雙面之電液動泵模型的性能探討 5.1雙級EHD泵之參考模型 5.2雙級交錯式雙面之EHD泵模型 5.3 雙級交錯式雙面之方管EHD泵的結果與討論 5.3.1 單根放電電極模組 5.3.2 三根放電電極模組 5.3.3 七根放電電極模組 5.3.4 小結 5.4 雙級交錯式雙面和參考EHD泵的特性比對討論 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻 附錄1 附錄2

    [1]謝維哲,"以EHD技術增強熱傳之研究",國立清華大學動力機械工程學系碩士論文,2008年。
    [2]H. Kalman and E. Sher, “Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly,” Journal of Applied Thermal Engineering, Vol. 21, No. 3, pp. 265-282, 2001.
    [3]R. T. Huang, W. J. Sheu, and C. C. Wang, “Heat Transfer Enhancement by Needle-Arrayed Electrodes – an EHD Integrated Cooling System,” Journa of Energy Conversion and Management, Vol. 50, No. 7, pp. 1789-1796, 2009.
    [4]M. Molki and P. Damronglerd, "Electrohydrodynamic Enhancement of Heat Transfer for Developing Air Flow in Square Ducts," Heat Transfer Engineering, Vol. 27, No. 1, pp. 35-45, 2006.
    [5]https://www.engadget.com/2011-05-31-nasas-new-cooling-pump-doesnt-need-moving-parts-set-to-chill.html
    [6]R. Futrzynski, Drag Reduction Using Plasma Actuators, Thesis, KTH Engineering Sciences, Stockholm, Sweden, 2015.
    [7]L. Leger, E. Moreau, and G. G. Touchard, "Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate," IEEE Transactions on Industry Applications, Vol. 38, No. 6, pp. 1478-1485, 2002.
    [8]https://flab.eng.isas.jaxa.jp/member/oyama/research_j.html
    [9]Scott A. McGrail, "Hollow Plume Mitigation of a High-Efficiency Multistage Plasma Thruster," California Poly. State University at San Luis Obispo, Master of Science in Aerospace Engineering, 2013.
    [10]A. D. Hosey and H.H. Jones, "Portable Electrostatic Precipitator Operating form 110 Volts AC or 6 Volts DC," Ama Archives of Industrial Hygiene and Occupational Medicine, Vol. 7, No. 1, pp. 49-57, 1953.
    [11]https://processdesign.mccormick.northwestern.edu/index.php/Environmental_concerns
    [12]F. C. Lai and K. W. Lai, "EHD-Enhanced Drying with a Wire Electrode," Drying Technology, Vol. 20, No. 7, pp. 1393-1405, 2007.
    [13]A. Esehaghbeygi and M. Basiry, "Electrohydrodynamic (EHD) Drying of Tomato Slices," Journal of Food Engineering, Vol. 104, No. 4, pp. 628-631, 2011.
    [14]W. Cao, Y. Nishiyama, and S. Koide, "Electrohydrodynamic Drying Characteristics of Wheat Using High Voltage Electrostatic Field," Journal of Food Engineering, Vol. 62, No. 3, pp. 209-213, 2004.
    [15]M. Basiry and A. Esehaghbeygi, "Electrohydrodynamic (EHD) Drying of Rapeseed (Brassica napus L.)," Journal of Electrostatics, Vol. 68, No. 4, pp. 360-363, 2010.
    [16]N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, and K. A. Honer, "Electrohydrodynamic (EHD) Cooled Laptop," Semiconductor Thermal Measurement and Management Symposium, pp. 261-266, 2009.
    [17]Mounir Laroussi, "Low-Temperature Plasmas for Medicine," IEEE Transactions on Plasma Science, Vol. 37, No. 6, pp. 714-725, 2007.
    [18]F. Hauksbee, "Physico-Mechanical Experiments on Various Subjects," 1st Ed., London, pp. 46-47, 1709.
    [19]A. P. Chattock, "On the Velocity and Mass of Ions in the Electric Wind in Air," Phil. Mag., Vol. 48, No. 294, pp. 401-420, 1899.
    [20]O. M. Stuetzer, "Ion Drag Pressure Generation," Journal of Applied Physics, Vol. 30, No. 7, pp. 984-997, 1959.
    [21]J. R. McDonald, W. B. Smith, and H. W. Spencer, "A Mathematical Model for Calculating Electrical Conditions in Wire-Duct Electrostatic Precipitation Devices," Journal of Applied Physics, Vol. 48, No. 6, pp 2231-2243, 1977.
    [22]L. Fouad and S. Elhazek, "Effect of Humidity on Positive Corona Discharge in a Three Electrode System," Journal of Electrostatics, Vol. 35, pp. 21-30, 1995.
    [23]F. C. Lai and R. K. Sharma, "EHD-Enhanced Drying with Multiple Needle Electrode," Journal of Electrostatics, Vol. 63, No. 3-4, pp. 223-237, 2005.
    [24]M. Rickard, D. Dunn-Rankin, F. Weinberg, and F. Carleton, "Characterization of Ionic Wind Velocity," Journal of Electrostatics, Vol. 63, No. 6-10, pp. 711-716, 2005.
    [25]M. Rickard, D. Dunn-Rankina, F. Weinbergb, and F. Carletonb, "Maximizing Ion-Driven Gas Flows," Journal of Electrostatics, Vol. 64, No. 6, pp. 368-376, 2006.
    [26]B. Komeili, J.S. Chang, G.D. Harvel, C.Y. Ching, and D. Brocilo, "Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump under Negative Corona Operations," Journal of Electrostatics, Vol. 66, No. 5–6, pp. 342-353, 2008.
    [27]S. M. Marco and H. R. Velkoff, "Effect of Electrostatic Fields on Free Convection Heat Transfer from Flat Plate," ASME Paper, No. 63-HT-9, 1963.
    [28]M. Robinson,"Convective Heat Transfer at the Surface of a Corona Electrode," Journal of Heat & Mass Transfer, Vol. 13, pp. 263-274, 1970.
    [29]M. E. Franke and L. E. Hogue, "Electrostatic Cooling of a Horizontal Cylinder," ASME Journal of Heat and Transfer, Vol. 34, pp. 544-548, 1991.
    [30]Amir Shooshtari, M. O. Franpa, and Francis H. R. "Experimental and Numerical Analysis of Electrohydrodynamic Enhancement of Heat Transfer in Air Laminar Channel Flow," IEEE SEMI- THERM Symposium, Vol. 19, 2003.
    [31]H. Y. Li, R. T. Huang, W. J. Sheu, and C. C. Wang, "EHD Enhanced Heat Transfer with Needle-Arrayed Electrodes," IEEE SEMI- THERM Symposium, Vol. 23, pp. 149-154, 2007.
    [32]J. Zhang and F. C Lai, "Effect of Emitting Electrode Number on the Performance of EHD Gas Pump in a Rectangular Channel," Journal of Electrostatics, Vol. 69, No. 6, pp. 486-493, 2011.
    [33]A. K. M. M. H. Mazumder and F. C. Lai, "Two-Stage Electrohydrodynamic Gas Pump in a Square Channel," Proc. ESA Annual Meeting on Electrostatics, pp. 1-12, 2011.
    [34]Y. T. Birhane, S. C. Lin, and T.Y. Huang,"Variation of Entrance Length Effect on EHD Gas Pump Performance," Key Engineering Materials, Vol. 649, pp. 1-8, 2015.
    [35]C. P. Tien, S. C. Lin, and F. C. Lai, " Experimental Study of EHD Pump in Square Channel with Asymmetric Electrodes," Journal of Electrostatics, Vol. 107, pp. 103482, 2019.
    [36]E. D. Fylladitakis, M. P. Theodoridis, and A. X. Moronis, " Review on the History, Research, and Applications of Electrohydrodynamics," IEEE Transactions on Plasma Science., Vol. 42, No. 2, pp. 358-375, 2014.
    [37]J. D. Moon, D. H. Hwang, and S. T. Geum, "An EHD Gas Pump Utilizing a Ring/Needle Electrode," IEEE Trans. Dielectr. Electr. Insul., Vol. 16, No. 2, pp. 352-358, 2009.
    [38]A. O. Ong, A. R. Abramson, and N. C. Tien, "Optimized and Microfabricated Ionic Wind Pump Array as a Next Generation Solution for Electronics Cooling Systems," IEEE InterSociety Conference on Thermal Thermomechanical Phenomena in Electronic Systems,Vol. 13, pp. 1306-1311, 2012.
    [39]A. O. Ongkodjojo, Electrohydrodynamic Microfabricated Ionic Wind Pumps for Electronics Cooling Applications, Thesis, Electrical Engineering and Computer Science, Case Western Reserve, U.S.A., 2013.
    [40]J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona Discharge Processes," IEEE Transactions on Plasma Science, Vol. 19, pp. 1152-1166, 1991.
    [41]S. C. Lin, C. Y. Wu, Y. J. Chang, and F. C. Lai, " A Two-Stage EHD Gas Pump in a Square Channel with Electrodes Mounted on Two Opposite Facing Walls," IEEE Industry Applications Society Annual Meeting, Detroit, Oct. 2020.

    無法下載圖示
    全文公開日期 2028/05/10 (校外網路)
    全文公開日期 2028/05/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE