簡易檢索 / 詳目顯示

研究生: 蔡宇翔
Yu-Shiang Tsai
論文名稱: 交聯TEMPO氧化纖維素水凝膠薄膜
Crosslinking TEMPO oxidized cellulose hydrogel film
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
丘力文
Lik-Voon Kiew
陳亦君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 39
中文關鍵詞: 交聯氧化纖維素水凝膠樹枝狀分子
外文關鍵詞: cellulose nano fiber, hydogel
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

通過2,2,6,6-四甲基-1-哌啶基氧基自由基(TEMPO)-氧化法製備纖維素奈米纖維,並將其命名為TOCNF。通過電導滴定法測定TOCNF的羧基含量,並根羧基含量準備了一系列的比例(NH2 / COO-)= 0、1.0、2.0、3.0和4.0。樹枝狀分子(Polyamidoamine (PAMAM) dendrimer)通過與TOCNF產生化學鍵結,形成交聯凝膠。通過傅里葉變換紅外吸收光譜檢查確定了醯胺鍵的形成,並測量了ζ電位的pH依賴性,以確定製備膜的凝膠形成的最佳條件。
薄膜的溶脹度和水氣吸附透露出NH2 / COO- = 2.0具有較高的交聯度。乾/濕拉伸試驗則讓我們了解到交聯後的薄膜變得更加堅韌並提高了耐水性。交聯後仍保留了薄膜本身的高透光性,並且熱穩定性提高。上述測量足以證實了交聯的水凝膠膜具有更好的機械性能,同時保持高透明性和熱穩定性的增加。


Cellulose nanofibers were prepared by 2,2,6,6-tetramethyl-1-piperdinyloxy free radical (TEMPO)-oxidation process and named TOCNF. The carboxyl content of TOCNF was determined by the conductivity titration method. According to the carboxyl content, we prepared series of ratios (NH2/COO-) = 0, 1.0, 2.0, 3.0 and 4.0). The amine-terminated dendrimer (generation 0) was attached to the TOCNF by amide linkage to form a crosslinked gel. The amide bond formation was checked by Fourier transform infrared absorption spectroscopy. The pH dependence of zeta potential was measured to determine the optimum condition of gel formation, where films were prepared.
Both swelling process and vapor adsorption of films indicated that the ratio NH2/COO- = 2.0 had higher crosslink degree. Dry/wet tensile test referred that films became more tough and increased the water resistance after crosslinking. The high transmittance of the film was still remaining and the thermo stability was increased after crosslinking. The above measurements confirmed that the crosslinked hydrogel films have better mechanical properties, remaining high transparency and increased thermal ability.

TABLE OF CONTENTS Abstract I 摘要 II Acknowledgements III TABLE OF CONTENTS IV List of Figures VI List of Table VIII Chapter 1: Introduction 1 1-1. Green material 1 1-1-1. Mechanical treatment to produce CNF 2 1-1-2. Chemical modification of hydroxyl groups 2 1-1-3. TEMPO oxidation 3 1-1-4. Reaction with functionalized CNF 4 1-1-5. Dendrimer 4 1-1-6. Cellulose-based hydrogels 6 1-2. Objective of This Research 8 Chapter 2: Experimental Section 9 2-1. Materials 9 2-2. Synthesis Procedure 9 2-2-1. Preparation of reduced TEMPO-oxidized cellulose (r-TOC) 9 2-2-2. Preparation of TEMPO-oxidized cellulose nanofiber (TOCNF) 10 2-2-3. Quantitative determination of carboxyl group 10 2-2-4. Cross-linking between TOCNF and dendrimer (TOCNF /Den) film 11 2-3. Characterization Techniques 13 Chapter 3: Results and Discussion 14 3-1. Carboxyl content in TEMPO-mediated Oxidized Cellulose Nanofiber 14 3-2. Characterization of TOCNF and their composites with Fourier transform infrared (FT-IR) absorption spectra 17 3-3. Properties of hydrogels 20 3-4. Characteristics of TOCNF/Den hydrogel by zeta potential 23 3-5. Film transmittance 25 3-6 Mechanical properties 26 3-7. Vapor adsorption ability 34 3-8. Thermal stability 37 Chapter 4: CONCLUSION 38 Reference 39

Reference
[1] A. F. Turbak, F. W. Snyder, and K. R. Sandberg, "Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential," in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States), 1983, vol. 37, no. CONF-8205234-Vol. 2: ITT Rayonier Inc., Shelton, WA.
[2] D. R. Paul and L. M. J. P. Robeson, "Polymer nanotechnology: nanocomposites," vol. 49, no. 15, pp. 3187-3204, 2008.
[3] A. F. Turbak, F. W. Snyder, and K. R. Sandberg, "Microfibrillated cellulose," ed: Google Patents, 1983.
[4] O. Nechyporchuk, M. N. Belgacem, J. J. I. C. Bras, and Products, "Production of cellulose nanofibrils: A review of recent advances," vol. 93, pp. 2-25, 2016.
[5] F. Corrales, F. Vilaseca, M. Llop, J. Girones, J. Mendez, and P. J. J. o. H. M. Mutje, "Chemical modification of jute fibers for the production of green-composites," vol. 144, no. 3, pp. 730-735, 2007.
[6] T. Saito, Y. Okita, T. Nge, J. Sugiyama, and A. J. C. p. Isogai, "TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products," vol. 65, no. 4, pp. 435-440, 2006.
[7] A. Isogai, T. Saito, and H. J. n. Fukuzumi, "TEMPO-oxidized cellulose nanofibers," vol. 3, no. 1, pp. 71-85, 2011.
[8] H. Orelma, I. Filpponen, L.-S. Johansson, M. Österberg, O. J. Rojas, and J. J. B. Laine, "Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics," vol. 7, no. 1, p. 61, 2012.
[9] P. J. Flory and J. J. T. j. o. c. p. Rehner Jr, "Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity," vol. 11, no. 11, pp. 512-520, 1943.
[10] D. A. Tomalia et al., "A new class of polymers: starburst-dendritic macromolecules," vol. 17, no. 1, pp. 117-132, 1985.
[11] D. A. Tomalia and J. M. J. J. o. P. S. P. A. P. C. Fréchet, "Discovery of dendrimers and dendritic polymers: a brief historical perspective," vol. 40, no. 16, pp. 2719-2728, 2002.
[12] D. A. Tomalia, L. Reyna, and S. Svenson, "Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging," ed: Portland Press Ltd., 2007.
[13] R. W. Scott, O. M. Wilson, and R. M. Crooks, "Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles," ed: ACS Publications, 2005.
[14] O. Wichterle and D. J. N. Lim, "Hydrophilic gels for biological use," vol. 185, no. 4706, pp. 117-118, 1960.
[15] S. J. Eichhorn, R. J. Young, and G. R. J. B. Davies, "Modeling crystal and molecular deformation in regenerated cellulose fibers," vol. 6, no. 1, pp. 507-513, 2005.
[16] J. J. P. i. P. S. Schurz, "'Trends in Polymer Science': A bright future for cellulose," vol. 24, no. 4, pp. 481-483, 1999.
[17] D. Klemm, B. Heublein, H. P. Fink, and A. J. A. c. i. e. Bohn, "Cellulose: fascinating biopolymer and sustainable raw material," vol. 44, no. 22, pp. 3358-3393, 2005.
[18] C. Chang and L. J. C. p. Zhang, "Cellulose-based hydrogels: Present status and application prospects," vol. 84, no. 1, pp. 40-53, 2011.
[19] J. M. Rosiak, F. J. N. I. Yoshii, M. i. P. R. S. B. B. I. w. Materials, and Atoms, "Hydrogels and their medical applications," vol. 151, no. 1-4, pp. 56-64, 1999.
[20] R. K. Johnson, "TEMPO-oxidized nanocelluloses: Surface modification and use as additives in cellulosic nanocomposites," Virginia Tech, 2010.
[21] D. da Silva Perez, S. Montanari, and M. R. J. B. Vignon, "TEMPO-mediated oxidation of cellulose III," vol. 4, no. 5, pp. 1417-1425, 2003.
[22] A. Benkaddour, C. Journoux-Lapp, K. Jradi, S. Robert, and C. J. J. o. m. s. Daneault, "Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process," vol. 49, no. 7, pp. 2832-2843, 2014.
[23] N. Ranganathan, R. Joseph Bensingh, M. Abdul Kader, and S. J. S. I. P. C. Nayak, Switzerland, "Synthesis and properties of hydrogels prepared by various polymerization reaction systems," 2018.
[24] M. Ujihara, M.-H. Hsu, J.-Y. Liou, and T. J. J. o. t. T. I. o. C. E. Imae, "Hybridization of cellulose nanofiber with amine-polymers and its ability on sick house syndrome gas decomposition," vol. 92, pp. 106-111, 2018.
[25] D. Leisner and T. J. T. J. o. P. C. B. Imae, "Polyelectrolyte behavior of an interpolyelectrolyte complex formed in aqueous solution of a charged dendrimer and sodium poly (L-glutamate)," vol. 107, no. 47, pp. 13158-13167, 2003.
[26] S. Pande and R. M. J. L. Crooks, "Analysis of poly (amidoamine) dendrimer structure by UV–Vis spectroscopy," vol. 27, no. 15, pp. 9609-9613, 2011.
[27] H. Brenner, Adsorption Calculations and Modelling. Elsevier, 2013.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE