簡易檢索 / 詳目顯示

研究生: 林玄宇
Hsuan-Yu Lin
論文名稱: 不同維度之奈米碳材/氯丁橡膠複合材料製備具耐候性外部包覆材之應用
Application of Different Dimension Carbon Nanomaterial/Chloroprene Rubber Composite Material for Weather-resistant Properties Exterior Covering Rubber
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 氯丁橡膠碳黑奈米碳管石墨烯交聯矽烷偶聯劑外部包覆材料
外文關鍵詞: chloroprene rubber, carbon black, carbon nanotubes, graphene, crosslinking, silane coupling agents, exterior covering material
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氯丁橡膠是合成橡膠中相當常見且實用的膠料之一,除了具備橡膠本身的各項優良物性之外,還擁有優良的耐環境性能。而在氯丁橡膠中,填料系統對於整體橡膠性能的影響最為顯著,在大多數的應用,有關於零維的填料如碳黑,已經有廣泛的研究,對於其他不同維度之奈米碳材料的探討較少。因此在本研究中,選用三種不同維度之奈米碳材,分別為碳黑(Carbon black)、奈米碳管(Carbon nanotubes)以及石墨烯(Graphene),並在三種添加量下(5/10/15phr),對比於無填料的情況,共十組硫化膠試樣,比較整體對於氯丁橡膠的各項性能強化效果,其中配合矽烷偶聯劑(Silane coupling agents)使奈米填料能完整分散相容於氯丁橡膠之中,並且也配合交聯劑乙烯硫脲(Ethylene thiourea, ETU)以及氧化鋅(Zinc oxide),建立氯丁橡膠之架橋系統,以強化整體氯丁橡膠之交聯與機械強度。實驗以微型混煉機製備出橡膠試片,並透過木尼黏度與硫化曲線分析其硫化性質,再透過機械性質分析比較各項物性差異,如硬度、耐磨耗、拉伸強度、熱老化、耐油性等。研究結果顯示,在交聯系統中,使用交聯劑配合金屬氧化物系統能提供更快的交聯速率並且提升硫化膠的交聯密度,而填料系統的部分配合使用矽烷偶聯劑提高奈米碳材於橡膠中的分散性,進一步強化填料對橡膠的增強效率,最後在三種不同維度的奈米碳材中,傳統碳黑具有穩定小幅度的補強效果,並具備價格低廉能大量生產的優勢,而奈米碳管只需少量的添加,就能大幅度的提升橡膠之交聯密度與硬度,但相對來說會影響橡膠本身之彈性及韌性,最後在石墨烯的測試下,唯有耐油性能隨添加量上升而下降,其整體對於物性表現以及耐候性上都有不錯的補強效果,本研究提供一個氯丁橡膠在不同需求或是價格考量上,對於補強填料選擇的方向。


    Chloroprene rubber is one of the most common and practical rubber compounds in synthetic rubber. In addition to the excellent physical properties, it also performs well weather resistance. In the overall chloroprene rubber system, the filler system has the most significant effect on the rubber performance. Although in most applications, there have been extensive studies on zero-dimensional fillers (such as carbon black), and there are few discussions on other carbon nanomaterials of different dimensions. Therefore, in this study, three different dimensions of carbon nanomaterials were selected, carbon black, carbon nanotubes and graphene, respectively. They were used in three additive amounts (5/10/15phr), and also compared with the case of no filler added. A total of ten sets of vulcanized rubber samples were prepared, compare their enhancing effects on chloroprene rubber. Silane coupling agents were also added to make nanofillers completely dispersed and compatible with chloroprene rubber. Furthermore, the crosslinking agent ethylene thiourea (ETU) and zinc oxide were used to complete the crosslinking system, strengthen the crosslinking density and mechanical strength of the rubber. In the experiment, bench kneader was used to prepare vulcanized rubber samples, and the vulcanization properties were analyzed through mooney viscometer and rheometer. Then compare the physical properties of each sample through mechanical property analysis, such as hardness, abrasion, tensile testing, aging resistance, oil resistance, etc. The results show that the use of crosslinking agent combined with metal oxide system can provide faster crosslinking rate and increase crosslinking density. Silane coupling agents were used in the filler system to improve dispersibility and reinforcing efficiency of carbon nanomaterials in chloroprene rubber. Among three different dimensions of carbon nanomaterials, traditional carbon black has a stable and small reinforcing effect. It also has the advantage of being inexpensive and capable of mass production. Carbon nanotubes can greatly increase the crosslinking density and hardness of rubber with a small amount of addition, but it will affect the elasticity and resilience of the rubber. Finally, when graphene is added, only the oil resistance performance decreases with the addition increased, it has a good effect on physical properties and weather resistance of the rubber. This study provides a direction for the choice of reinforcement materials for chloroprene rubber in different needs or price considerations.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 x 表目錄 xiv 第一章、緒論 1 1.1前言 1 1.2橡膠基本介紹 2 1.3氯丁橡膠(Chloroprene rubber) 4 1.3.1氯丁橡膠的發展 4 1.3.2氯丁橡膠的性質 6 1.4氯丁橡膠的配方 7 1.5氯丁橡膠交聯系統 7 1.5.1金屬氧化物 8 1.5.2交聯劑的選擇 8 1.6氯丁橡膠填料系統-奈米碳材料 10 1.6.1碳黑(Carbon black)的基本介紹 10 1.6.2碳黑的製備方式 12 1.6.3奈米碳管(Carbon nanotubes)的基本介紹 12 1.6.4奈米碳管的製備方式 13 1.6.5石墨烯(Graphene)的基本介紹 14 1.6.6石墨烯的製備方式 15 1.7研究動機 16 第二章、文獻回顧 18 2.1橡膠的交聯發展 18 2.1.1硫磺硫化體系 19 2.1.2過氧化物硫化體系 20 2.1.3金屬氧化物硫化體系 21 2.2氯丁橡膠的交聯體系[31] 22 2.2.1氯丁橡膠的交聯配方[31] 22 2.2.2氯丁橡膠的交聯機制[31] 23 2.3矽烷偶聯劑於橡膠中之應用 25 2.4奈米碳材於橡膠中之應用 27 2.4.1黑煙材料於橡膠之效應 27 2.4.2不同維度奈米碳材料於橡膠之應用 28 第三章、實驗方法 30 3.1實驗流程圖 30 3.2實驗藥品與儀器 31 3.2.1實驗藥品 31 3.2.2實驗設備與儀器 32 3.3實驗步驟 33 3.3.1橡膠的製備流程 33 3.3.2木尼黏度試驗(Mooney viscosity) 35 3.3.3硫化試驗(Vulcanization) 37 3.3.4比重試驗(Specific gravity) 39 3.3.5硬度試驗(Hardness) 39 3.3.6拉伸強度及伸長率試驗(Tensile testing) 40 3.3.7熱老化試驗(Aging resistance test)[27] 42 3.3.8耐油性試驗(Oil resistance test) 43 3.3.9耐磨耗試驗(Abrasion) 44 第四章、結果與討論 46 4.1金屬氧化物交聯系統之性能分析 46 4.1.1木尼黏度(Mooney viscosity) 46 4.1.2硫化曲線(Vulcanization curve) 48 4.2矽烷偶聯劑於奈米碳材中之應用 50 4.2.1矽烷偶聯劑之反應機制 50 4.2.2以SEM分析橡膠之表面形貌 51 4.2.3以100%定伸模量分析奈米碳材之分散性 52 4.3不同維度奈米碳材於氯丁橡膠之硫化性能研究 55 4.3.1木尼黏度值測試(Mooney viscosity) 55 4.3.2硫化曲線之分析(Vulcanization curve) 56 4.4不同維度奈米碳材於氯丁橡膠之機械性質及物性研究 58 4.4.1添加不同維度碳材之硬度性能(Hardness) 58 4.4.2添加不同維度碳材之磨耗性能分析(Abrasion) 61 4.4.3添加不同維度碳材之伸長回復率之比較(Tension set) 63 4.4.4添加不同維度碳材之拉伸試驗(Tensile testing) 65 4.5不同維度奈米碳材於氯丁橡膠之耐環境性能研究 67 4.5.1耐油/耐溶劑之環境測試(Oil resistance) 67 4.5.2耐熱/耐老化之環境測試(Aging resistance) 70 第五章、結論 74 第六章、參考文獻 76

    1. J. A. Brydson. Rubber Chemistry. Applied Science Publishers Ltd., London, 1978.
    2. W. Hofmann. Rubber Technology Handbook, Hanser Publishers, New York, 1989.
    3. W. Obrecht, J.-P. Lambert, M. Happ, C. Oppenheimer-Stix, J. Dunn, and R. Kruger. Rubber: Emulsion Rubbers, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Germany, 2000.
    4. DuPont. DuPonte Neoprene Polychloroprene, Accessed date May 31, 2013.
    5. Meier, J. F., Minter, H. F., & Connors, H. J. Molded neoprene liner pads for the poseidon missile launcher. Journal of Applied Polymer Science, 1971, 15(3), 619-640.
    6. Schatzel, R. A., & Cassell, G. W. Synthetic elastic polymers in the cable industry. Industrial & Engineering Chemistry, 1939, 31(8), 945-949.
    7. Brendan, R. Rubber Compounding: Chemistry and Application, Marcel Dekker Inc: New York, 2004.
    8. White, J., De, S. K., Naskar, K. Rubber Technologist’s Handbook, Repra Technology Ltd: Shawbury, 2009.
    9. Ciesielski, A. An Introduction to Rubber Technology, Repra Technology Ltd: Shawbury, 1999.
    10. Hofmann, W. Vulcanization and Vulcanizing Agents, Maclaren and son Ltd: Horncastle, 1967.
    11. Dick, J. S. Rubber Technology: Compounding and Testing for Performance, Hanser publisher: Munich, 2001.
    12. Akiba, M.; Hashim, A. S. Vulcanization and Crosslinking in Elastomers, Prog. Polym. Sci., 1997, 22, 475.
    13. Dong, C., Yuan, C., Wang, L., Liu, W., Bai, X., & Yan, X. Tribological properties of water-lubricated rubber materials after modification by MoS2 nanoparticles. Scientific reports, 2016, 6(1), 1-12., p. 35023.
    14. Zheng, M. S., Zha, J. W., Yang, Y., Han, P., Hu, C. H., & Dang, Z. M. Enhanced breakdown strength of poly (vinylidene fluoride) utilizing rubber nanoparticles for energy storage application. Applied Physics Letters, 2016, 109(7), 072902.
    15. Ngah, S. A., & Taylor, A. C. Toughening performance of glass fibre composites with core–shell rubber and silica nanoparticle modified matrices. Composites Part A: Applied Science and Manufacturing, 2016, 80, 292-303.
    16. Pham, J. Q., Mitchell, C. A., Bahr, J. L., Tour, J. M., Krishanamoorti, R., & Green, P. F. Glass transition of polymer/single‐walled carbon nanotube composite films. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(24), 3339-3345.
    17. Li, H., Wu, S., Wu, J., & Huang, G. A facile approach to the fabrication of graphene-based nanocomposites by latex mixing and in situ reduction. Colloid and Polymer Science, 2013, 291(10), 2279-2287.
    18. Gorga, R. E., & Cohen, R. E. Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotubes. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(14), 2690-2702.
    19. Luo, Y. Y., Wang, Y. Q., Zhong, J. P., He, C. Z., Li, Y. Z., & Peng, Z. Interaction between fumed-silica and epoxidized natural rubber. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(4), 777-783.
    20. Nie, Y., Huang, G., Qu, L., Wang, X., Weng, G., & Wu, J. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer, 2011, 52(14), 3234-3242.
    21. Weng, G., Huang, G., Qu, L., Nie, Y., & Wu, J. Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. The Journal of Physical Chemistry B, 2010, 114(21), 7179-7188.
    22. Wei, Y., Wu, H., Weng, G., Zhang, Y., Cao, X., Gu, Z., et al. Effect of interface on bulk polymer: control of glass transition temperature of rubber. Journal of Polymer Research, 2018, 25(8), 1-13.
    23. Liu, Y., Zhou, Q., Lu, Q., Han, C., Zhou, Z., Liang, Z., et al. Reinforcement and Toughening of Rubber by Bridging Graphene and Nanosilica. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(2), 337-348.
    24. Nie, Y. Thermodynamic description of strain-induced crystallization of natural rubber by a combination of the tube model and a scaling argument. Journal of Macromolecular Science, Part B, 2015, 54(4), 492-506.
    25. Nie, Y., Gu, Z., Wei, Y., Hao, T., & Zhou, Z. Features of strain-induced crystallization of natural rubber revealed by experiments and simulations. Polymer Journal, 2017, 49(3), 309-317.
    26. Simon, M. W., Stafford, K. T., & Ou, D. L. Nanoclay reinforcement of liquid silicone rubber. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18(3), 364-373.
    27. Market Publishers, Natural vs. Synthetic Rubber: Key Market Trends & Statistics, 2018.
    28. Polaris Market Research, Synthetic Rubber Market Share, Size, Trends, Industry Analysis Report, 2019.
    29. 卞新声,王世轶,张庆余,液体氯丁二烯-甲基丙烯酸羟乙(丙)酯共聚物的合成和表征,合成橡胶工业,1984.
    30. 許建雄,氯丁橡膠加工與應用,化學工業出版社,2012.
    31. Berry, K., Liu, M., Chakraborty, K., Pullan, N., West, A., Sammon, C., & Topham, P. D. Mechanism for cross-linking polychloroprene with ethylene thiourea and zinc oxide. Rubber chemistry and technology, 2015, 88(1), 80-97.
    32. Sae-Oui, P., Sirisinha, C., & Hatthapanit, K. Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends. Express Polymer Letters, 2007, 1(1), 8-14.
    33. Donnet, J. B., Wang, W. D., Vidal, A., & Wang, M. J. Observation of plasma-treated carbon black surfaces by scanning tunnelling microscopy. Carbon, 1994, 32(2), 199-206.
    34. Donnet, J. B. Fifty years of research and progress on carbon black. Carbon, 1994, 32(7), 1305-1310.
    35. Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994, 32(5), 759-769.
    36. Schmidt, M. W., & Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global biogeochemical cycles, 2000, 14(3), 777-793.
    37. Iijima, S. Helical microtubules of graphitic carbon. nature, 1991, 354(6348), 56-58.
    38. Baughman, R. H., Zakhidov, A. A., & De Heer, W. A. Carbon nanotubes--the route toward applications. science, 2002, 297(5582), 787-792.
    39. Iijima, S., & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. nature, 1993, 363(6430), 603-605.
    40. Sarangdevot, K., & Sonigara, B. S. The wondrous world of carbon nanotubes: Structure, synthesis, properties and applications. J. Chem. Pharm. Res, 2015, 7(6), 916-933.
    41. Thostenson, E. T., Ren, Z., & Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 2001, 61(13), 1899-1912.
    42. Ebbesen, T. W., & Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358(6383), 220-222.
    43. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., & Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998, 282(5391), 1105-1107.
    44. Zhu, H. W., Xu, C. L., Wu, D. H., Wei, B. Q., Vajtai, R., & Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296(5569), 884-886.
    45. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. Electric field effect in atomically thin carbon films. science, 2004, 306(5696), 666-669.
    46. Geim, A. K., & Novoselov, K. S. The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals, 2010, 11-19.
    47. Novoselov, K. S., Fal, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. A roadmap for graphene. nature, 2012, 490(7419), 192-200.
    48. Compton, O. C., & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. small, 2010, 6(6), 711-723.
    49. Datta, R. N. Rubber curing systems, iSmithers Rapra Publishing, 2002.
    50. Ismail, H., & Chia, H. H. The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds. European polymer journal, 1998, 34(12), 1857-1863.
    51. Bansod, N. D., Kapgate, B. P., Das, C., Basu, D., Debnath, S. C., Roy, K., & Wiessner, S. Controlled growth of in situ silica in a NR/CR blend by a solution sol–gel method and the studies of its composite properties. RSC Advances, 2015, 5(66), 53559-53568.
    52. Siriwong, C., Sae-Oui, P., & Sirisinha, C. Comparison of coupling effectiveness among amino-, chloro-, and mercapto silanes in chloroprene rubber. Polymer testing, 2014, 38, 64-72.
    53. Saad, I. S., Fayed, M. S., & Abdel-Bary, E. M. Effects of Carbon Black Content on Cure Characteristics, Mechanical Properties and Swelling Behaviour of 80/20 NBR/CIIR Blend, Aerospace Sciences and Aviation Technology, ASAT-13, 2009, 26-28, The Military Technical College, p. 1-9.
    54. Jovanović, V., Samaržija-Jovanović, S., Budinski-Simendić, J., Marković, G., & Marinović-Cincović, M. Composites based on carbon black reinforced NBR/EPDM rubber blends. Composites Part B: Engineering, 2013, 45(1), 333-340.
    55. Das, A., Kasaliwal, G. R., Jurk, R., Boldt, R., Fischer, D., Stöckelhuber, K. W., & Heinrich, G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012, 72(16), 1961-1967.
    56. Alwaan, I. M. Rheological characterization and modeling of vulcanization kinetics of natural rubber/starch blends. Journal of Applied Polymer Science, 2018, 135(23), 46347.

    無法下載圖示 全文公開日期 2026/02/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE