簡易檢索 / 詳目顯示

研究生: 陳頎夫
Chi-fu chen
論文名稱: 應用電腦視覺於隧道內定位之初探
Preliminary Study of Localization in Tunnels Using Computer Vision
指導教授: 謝佑明
Yo-ming Hsieh
口試委員: 陳鴻銘
Hung-Ming Chen
廖國偉
K. W. Liao
王泰典
Tai-Tien Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 電腦視覺定位隧道目視檢查
外文關鍵詞: computer vision, localization, tunnel, visual inspection
相關次數: 點閱:199下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於台灣地區為超過2/3的多山地形,因此隧道成為重要的基本建設。對於隧道的保養與管理工作中,定期的檢查為確保隧道之安全性與可正常運作所必要的措施,而目視檢查則為最常被使用的方法。在目視檢查過程中,隧道內的異狀與發生位置均需被記錄,以作為後續處理參考。但在實際執行上,位置資訊僅由檢測者大略的推測與記錄,而可能在此人工操作的過程當中引入錯誤。
目前能在隧道內提供可靠位置資訊且廉價的方案是不存在的。全球定位系統(GPS)在隧道內無法運作。大部份能在隧道中提供位置資訊的方案均需要事先設置好圖形或無線電標記,然這些標記則造成額外的購置與維護成本。而使用陀螺儀與加速感測器構成的慣性導航系統則具有誤差累積的缺點。
本研究建立一套透過電腦立體視覺做為提供隧道內位置資訊之演算法,並利用市售網路攝影機與一般筆記型電腦搭配常見之電腦視覺函式庫(OpenCV)開發系統雛型,並對所開發出來之演算法與系統進行評估。初步結果表示方法可行,但若要在未來投入實務應用時仍有改進的空間。


Tunnels are important infrastructures in Taiwan, because two third of the island is occupied by mountains. To maintain and manage these tunnels, regular tunnel inspections are necessary in order to keep them in working and safe conditions. Visual inspection is the most frequent inspection type performed, and it is the first defense to discover unfavorable conditions. During visual inspections, anomalies and their locations are recorded, and further actions are scheduled accordingly. In practice, locations are roughly estimated and recorded by inspectors. Errors can thus be introduced during this manual process.
Currently reliable and inexpensive automated systems that can provide positioning information in tunnels do not exist. The global positioning system (GPS) does not work in tunnels. Most viable solutions in tunnels require installations space registration markers or radios with known locations. These markers, however, incur additional cost for installation and maintenance. Inertia navigation systems using gyroscopes or accelerometers without markers may introduce and accumulate positioning errors.
In this work, an automated localization system in tunnels using computer stereo vision is studied, and a prototype system is developed and evaluated. The fundamental algorithm for localization in tunnels using computer vision is developed. It is then evaluated by implementing a prototype system using two commercial available webcams, a well-known computer vision library (OpenCV), and a laptop computer. Preliminary results suggest the method developed can work, but further enhancements are necessary to realize the system with practical values.

論文摘要 V ABSTRACT VII 誌 謝 IX 目錄 XI 圖目錄 XV 表目錄 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 定位方法 3 2.1.1 導線測量 3 2.1.2 全球定位系統(Global Positioning System, GPS) 4 2.1.3 慣性導航系統(Inertial Navigation System, INS) 5 2.1.4 無線電定位 6 2.1.5 整合方案 7 2.1.6 影像辨識及比對(Image recognition and matching) 7 2.1.7 前述方法之比較與適用性 8 2.2 電腦視覺 9 2.2.1 單眼視覺應用 9 2.2.2 雙眼視覺應用 10 2.3 基底變換 11 2.4 擴增實境(Augmented Reality) 12 第三章 研究方法 14 3.1 研究流程 14 3.2 OpenCV 16 3.2.1 取得影像 17 3.2.2 影像校正 17 3.2.3 特徵點提取 17 3.2.4 線性方程解算 18 3.3 影像校正 18 3.3.1 畸變校正 18 3.3.2 多相機校正 20 3.3.3 呼叫函式 21 3.4 硬體設備 22 第四章 電腦視覺隧道內定位之流程與計算方法 23 4.1 流程 23 4.1.1 整體流程 23 4.1.2 校正流程 23 4.1.3 給定區域座標流程 24 4.1.4 計算系統位置並給定全域座標流程 25 4.2 計算方法 25 4.2.1 特徵點匹配 25 4.2.1.1 不同視角之特徵點匹配 25 4.2.1.2 不同時間之匹配 27 4.2.2 拔靴法 29 4.2.3 可疑配對點濾除 30 4.2.3.1 配對方向限定 30 4.2.3.2 不對齊配對處理 32 4.2.3.3 多重配對處理 33 4.2.3.4 測距誤差上限 34 4.2.3.5 相關係數 34 第五章 測距誤差與可信程度之探討 36 5.1 像差與距離之關係 36 5.2 解析度之影響 38 5.3 基線長之影響 39 5.4 距離之影響 40 第六章 系統架構與流程 45 6.1 程式類別 45 6.1.1 config類別 45 6.1.2 Calibrator類別 47 6.1.3 CaptureCam類別 47 6.1.4 filters類別 47 6.2 詳細整體流程及門檻值設定 48 6.2.1 校正流程 48 6.2.2 Phase 0 49 6.2.3 計算系統位置並給定全域座標流程 52 6.2.4 圖像、特徵點、配對與三維座標間之關係 53 第七章 系統驗證與展示 55 7.1 系統展示 55 7.1.1 校正 55 7.1.2 Phase 0 59 7.1.3 計算位置 60 7.2 驗證 65 7.2.1 測距驗證 65 7.2.2 室內靜態 68 7.2.3 室外靜態 70 7.2.4 室內移動 72 7.3 現地測試 74 7.3.1 靜止測試 74 7.3.2 移動測試 76 第八章 結論與建議 79 8.1 結論 79 8.2 建議與未來展望 80 8.2.1 特徵點萃取與匹配方法 80 8.2.2 對於誤差累積之處理 80 8.2.3 針對「人」而設計之系統 81 8.2.4 與其他資源之整合 82 參考文獻 83

[1] wikipedia. (2011). 導線測量. Available: http://zh.wikipedia.org/zh-tw/%E5%AF%BC%E7%BA%BF%E6%B5%8B%E9%87%8F
[2] 陳良健. 國立中央大學土木工程學系測量學講義 [Online]. Available: http://dpl.csrsr.ncu.edu.tw/download/surveying/
[3] wikipedia. (2011). GPS. Available: http://zh.wikipedia.org/wiki/GPS
[4] K. R. Britting, Inertial Navigation Systems Analysis, John Wiley & Sons, Canada., 1971.
[5] 曹國隆, "Data Fusion Based on Indirect Fuzzy Kalman Filter," 碩士, 電機工程學系, 中原大學, 2003.
[6] J. Farrel and M. Barth, The global positioning system and inertial navigation: Mc Graw-Hill Professional.
[7] wikipedia. (2011). 慣性導航系統. Available: http://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%AF%BC%E8%88%AA%E7%B3%BB%E7%BB%9F
[8] P. Mazurkiewicz and K. K. Leung, "Clique-Based Location Estimations for Wireless Sensors in GPS-Free Environments," in Computer Communications and Networks, 2008. ICCCN '08. Proceedings of 17th International Conference on, 2008, pp. 1-6.
[9] L. Hui, H. Darabi, P. Banerjee, and L. Jing, "Survey of Wireless Indoor Positioning Techniques and Systems," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37, pp. 1067-1080, 2007.
[10] B. T. Fang, "Simple solutions for hyperbolic and related position fixes," IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 748-753, 1990.
[11] D. J. Torrieri, "STATISTICAL THEORY OF PASSIVE LOCATION SYSTEMS," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-20, pp. 183-198, 1984.
[12] Z. Junyang, K. M. K. Chu, and J. K. Y. Ng, "Providing location services within a radio cellular network using ellipse propagation model," in Advanced Information Networking and Applications, 2005. AINA 2005. 19th International Conference on, 2005, pp. 559-564 vol.1.
[13] M. Kossel, H. R. Benedickter, R. Peter, and W. Bachtold, "Microwave backscatter modulation systems," in Microwave Symposium Digest. 2000 IEEE MTT-S International, 2000, pp. 1427-1430 vol.3.
[14] K. Pahlavan, L. Xinrong, and J. P. Makela, "Indoor geolocation science and technology," Communications Magazine, IEEE, vol. 40, pp. 112-118, 2002.
[15] B. D. Van Veen and K. M. Buckley, "Beamforming: a versatile approach to spatial filtering," ASSP Magazine, IEEE, vol. 5, pp. 4-24, 1988.
[16] P. Stoica and R. L. Moses, Introduction to Spectral Analysis: Englewood Cliffs, NJ: Prentice-Hall, 1997.
[17] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, "Exact and large sample ML techniques for parameter estimation and detection in array processing," in Radar Array Processing, S. S. Haykin, J. Litva, and T. J. Shepherd, Eds., ed New York: pringer-Verlag, 1993, pp. 99-151.
[18] A. Teuber, B. Eissfeller, and T. Pany, "A Two-Stage Fuzzy Logic Approach for Wireless LAN Indoor Positioning," in Position, Location, And Navigation Symposium, 2006 IEEE/ION, 2006, pp. 730-738.
[19] R. Want, A. Hopper, V. Falcao, and J. Gibbons, "The active badge location system," ACM Trans. Inf. Syst., vol. 10, pp. 91-102, 1992.
[20] J. Hightower, R. Want, and G. Borriello, "SpotON: An indoor 3D location sensing technology based on RF signal strength," Univ. Washington, Seattle, Tech, Rep UW CSE 2000–02-02, Feb 2000.
[21] C. Xiong, D. Han, and Y. Xiong, "An integrated localization system for robots in underground environments," Industrial Robot, vol. 36, pp. 221-229, 2009.
[22] C. Siagian and L. Itti, "Biologically-inspired robotics vision Monte-Carlo localization in the outdoor environment," 2007, pp. 1723-1730.
[23] H. Zhang, G. Wang, and Y. Cen, "Summary of distance measurement based on vision in localization technology," 2007, pp. 1992-1996.
[24] D. C. Anderson, Interactive Computer Graphics, 1999.
[25] Layer. (2011). http://www.layar.com/. Available: http://www.layar.com/
[26] zugara. (2011). Available: http://www.zugara.com/
[27] H. Pu-Hao, "3D AR-based Simulation for Construction Operation," Master Master's Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, 2010.
[28] G. Schall, "Handheld Augmented Reality in Civil Engineering," presented at the 4th Conference on Computer image processing and its application in Slovenia 2009 (ROSUS 2009), Maribor, Slovenia, 2009.
[29] S. W. Lawson and J. R. G. Pretlove, "Augmented reality for underground pipe inspection and maintenance," in Proceeding of Conference on Telemanipulator and Telepresence Technologies, Boston, Massachusetts, 1998.
[30] A. H. Behzadan and V. R. Kamat, "Visualization of construction graphics in outdoor augmented reality," in Proceedings of the 2005 Winter Simulation Conference, 2005, pp. 1914-1920.
[31] D. H. Shin and P. S. Dunston, "Evaluation of Augmented Reality in steel column inspection," Automation in Construction, vol. 18, pp. 118-129, 2009.
[32] D. H. Shin and W.-S. Jang, "Utilization of ubiquitous computing for construction AR technology," Automation in Construction, vol. 18, pp. 1063-1069, 2009.
[33] I. o. OpenCV. Available: http://opencv.willowgarage.com/wiki/Welcome/Introduction#Announcements
[34] D. G. Lowe, "Object recognition from local scale-invariant features," in Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, 1999, pp. 1150-1157 vol.2.
[35] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, pp. 346-359, 2008.
[36] B. DC, "Decentering distortion of lenses," Photogrammetric Engineering, vol. 7, pp. 444-462, 1966.
[37] 沈軾珉, "小樣本時雙樣本檢定之探討," 碩士, 應用數學研究所, 靜宜大學, 1996.

QR CODE