簡易檢索 / 詳目顯示

研究生: 陳嵩樺
Sung-Hua Chen
論文名稱: 基於紅外線(IR)與RGB影像的太陽能光電廠自動化瑕疵檢測分類及定位系統
Automatic detection, classification and localization system of defective defects in photovoltaic plants based infrared (IR) and RGB image
指導教授: 黃昌群
Chang-Chiun Huang
郭中豐
Chung-Feng Kuo
口試委員: 黃昌群
Chang-Chiun Huang
郭中豐
Chung-Feng Kuo
邱錦勳
Chin-Hsun Chiu
陳貽評
Yi-Ping Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 影像視覺與熱分析法太陽能光電廠自動化IR與RGB影像PV模組瑕疵辨識分類系統卷積神經網路
外文關鍵詞: Image Vision and Thermal Analysis, PV Plant, Automated IR and RGB Image PV module Identification Classification System, Convolution Neural Network
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於太陽能光電(Photovoltaic, PV)廠維運系統的建立,使用無人機搭載熱成像儀拍攝影像,應用紅外線熱(IR)影像檢測PV 模組熱瑕疵、RGB影像檢測模組表面瑕疵,兩者交叉驗證模組瑕疵原因。
      第一部建立太陽能光電廠資訊圖,以臺灣太陽能光電廠(PV模組1482片,410kW)為例,應用尺度不變特徵點偵測法,偵測太陽能光電廠影像特徵點,解決影像亮度、旋轉、縮放等特徵變化問題,將多張局部電廠影像相同特徵點進行匹配,透過平面投影矩陣轉換與隨機抽樣一致化計算最佳特徵點數量,將影像拼接形成太陽能光電廠全景圖,再藉由影像色度去除電廠全景圖背景雜訊,並利用影像亮度對PV系統進行模組分割、形態學對PV 模組進行幾何重建,使用拉普拉斯運算子,提取PV 模組邊緣輪廓,得到周長、面積、形心特徵,辨識計算PV 模組數量與位置,形成太陽能光電廠資訊圖。
      第二部分建立PV模組瑕疵辨識分類系統,收集臺灣7座太陽能光電廠瑕疵,使用卷積神經網路(CNN),除卷積層擷取影樣特徵外,透過最大池化與局部響應正規化函數強化影像特徵,並透過色彩空間轉換強化色彩特徵,提高分類模型準確率,辨識定位PV 模組瑕疵。對IR 影像熱點,辨識準確率為100%。對正常模組及7種瑕疵共八類進行分類,準確率97.52%。對RGB 影像模組外觀正常及5種瑕疵共六類進行分類,準確率99.17%。同時對IR 影像與RGB 影像14種瑕疵進行分類,準確率97.52%。將IR影像與RGB影像交叉驗證瑕疵產生的原因,本研究使用K-Fold交叉驗證選擇出最佳模型,辨識一張影像小於0.02秒,低於相機時間常數,可應用在即時偵測。
      第三部分建立太陽能光電廠瑕疵資訊圖,在檢測時,將具有瑕疵之PV模組標記,得知電廠PV 模組的瑕疵與其位置,利於電廠維護。


    This study aims to build a photovoltaic (PV) plant maintenance and operation system, using an unmanned aerial vehicle (UAV) carrying a thermal imager to take images. In the proposed system, the infrared (IR) image was used for detecting PV module thermal defects, and the RGB image was used for detecting module surface defects. The two images were employed to cross validate the causes for module defects.
    In Part I, the PV plant information pattern was created, and the Taiwan PV plant (1,482 PV modules, 410 kW) was taken as an example. The PV system image feature points were detected by using the Scale Invariant Feature Transform (SIFT), in order to solve the feature variation problems, such as image luminance, rotation, and zoom in/out. The same feature points of multiple local power plant images were matched. Afterwards, the optimal number of feature points was calculated by homography transformation and random sample consensus (RANSAC) to form the PV plant panorama by image stitching. The power plant panorama background noise was removed by image hue. The module segmentation of PV systems was performed by using image luminance, and the PV module was geometrically reconstructed by using morphology. The PV module edge contour was extracted by the Laplace operator to obtain the perimeter, area, and centroid features. The quantity and positions of PV modules were recognized and calculated to form the PV plant information pattern.
    In Part II, the PV module defect recognition and classification system was built. The defects in seven PV plants in Taiwan were collected, and the image features were enhanced using a convolutional neural network (CNN). Besides using the convolution layer to capture the image features, Max Pooling and local response normalization were used to enhance the image features. Color space transform was used to intensify the color features, increase the accuracy of the classification modules, and recognize and position the PV module defects. The IR image hot spot recognition accuracy was 100%. The classification accuracy of eight modules, including one normal module and seven defect modules, is 97.52%. The classification accuracy of six modules, including the appearances of one normal module and five defects in RGB images, is 99.17%. The classification accuracy of 14 defects in IR thermal images and RGB images is 97.52%. The causes of defects were cross validated by IR thermal image and RGB image. This study applied the K-fold cross validation to select the optimal model, and the recognition time of one image was shorter than 0.02 sec, which is lower than the camera time constant. The results show that the system is applicable to real-time detections.
    In Part III, the PV plant defect information pattern was created. The PV module with defects was labeled during detection, and the defects in the power plant PV module and the positions thereof were obtained, which would be favorable for PV plant maintenance.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 X 表目錄 XIII 第1章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1 PV系統 2 1.2.2太陽能光電廠PV模組辨識 5 1.2.3 PV模組瑕疵辨識 6 1.3研究動機與目的 8 1.4論文架構 10 第2章 太陽能光電系統瑕疵檢測介紹 12 2.1設備要求與環境限制 12 2.2影像拍攝方法 12 2.3 瑕疵類別 14 第3章 影像處理 18 3.1影像拼接 18 3.1.1 特徵點偵測與匹配 18 3.1.2平面投影矩陣轉換 22 3.1.3 影像融合 23 3.2影像前處理 23 3.3 色彩空間轉換 24 3.3.1 RGB色彩空間 24 3.3.2 XYZ色彩空間 24 3.3.3 L*a*b*色彩空間 25 3.3.4 HSV色彩空間 25 3.3.5 YCbCr色彩空間 26 3.4 形態學 26 3.4.1 連通標記 27 3.4.2 侵蝕與膨脹 28 3.4.3 開運算與閉運算 29 3.4.3 補洞法 30 3.5 影像分割 31 3.6 影像特徵 32 3.6.1 邊緣檢測 33 3.6.2 周長與面積 34 3.6.3 形心 34 第4章 卷積神經網路 35 4.1 卷積層 35 4.2 激勵函數 36 4.3 池化層 37 4.4 正規化 37 4.5 全連接層 38 4.6損失函數 38 4.7優化器 39 4.8 K-FOLD交叉驗證法 40 4.9 混淆矩陣 41 第5章 系統開發與驗證 43 5.1 研究設備 43 5.2太陽能光電廠資訊圖 45 5.2.1 電廠影像拼接 45 5.2.2 太陽能光電PV模組辨識 49 5.3太陽能光電PV模組瑕疵辨識分類系統 53 5.3.1 IR影像熱點瑕疵偵測 56 5.3.2 IR熱影像PV模組瑕疵分類 58 5.3.3 RGB影像PV模組瑕疵分類實驗 60 5.3.4 IR影像與RGB影像PV模組瑕疵分類實驗 63 5.3.5 IR影像與RGB影像PV模組瑕疵交叉驗證 65 5.4太陽能光電廠瑕疵資訊圖 66 5.5成果討論 68 5.5.1 太陽能光電廠瑕疵資訊圖討論 68 5.5.2 PV模組瑕疵辨識與分類討論 70 第6章 結論 76 參考文獻 79 附錄A:PV模組定位詳細座標 88

    [1] Wood, N., & Roelich, K. (2019). Tensions, capabilities, and justice in climate change mitigation of fossil fuels. Energy Research & Social Science, 52, 114-122.
    [2] Arent, D. J., Wise, A., & Gelman, R. (2011). The status and prospects of renewable energy for combating global warming. Energy Economics, 33(4), 584-593.
    [3] Shivalkar, R. S., Jadhav, H. T., & Deo, P. (2015, March). Feasibility study for the net metering implementation in rooftop solar PV installations across reliance energy consumers. In 2015 International Conference on Circuits, Power and Computing Technologies, pp. 1-6.
    [4] Oliva, D., Cuevas, E., & Pajares, G. (2014). Parameter identification of solar cells using artificial bee colony optimization. Energy, 72, 93-102.
    [5] Liu, S. Y., Perng, Y. H., & Ho, Y. F. (2013). The effect of renewable energy application on Taiwan buildings: What are the challenges and strategies for solar energy exploitation. Renewable and Sustainable Energy Reviews, 28, 92-106.
    [6] Jäger-Waldau, A. (2020). Snapshot of photovoltaics February 2020. Energies, 13(4), 930.
    [7] Abu-Rumman, A. K., Muslih, I., & Barghash, M. (2017). Life cycle costing of PV generation system. Journal of applied research on industrial engineering, 4(4), 252-258.
    [8] IEC TS 62446-3. Part 3: Outdoor infrared thermography of photovoltaic modules and plants. In Photovoltaic (PV) Systems Requirements for Testing, Documentation and Maintenance; International Electrotechnical Commission: Geneva‎, Switzerland, 2017.
    [9] Kaaya, I., Ascencio-Vasquez, J., Weiss, K. A., & Topic, M. (2021). Assessment of uncertainties and variations in PV modules degradation rates and lifetime predictions using physical models. Solar Energy, 218, 354-367.
    [10] Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K. J., Wilberforce, T., & Olabi, A. G. (2021). Environmental impacts of solar energy systems: A review. Science of The Total Environment, 754, 141989.
    [11] Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy policy, 33(3), 289-296.
    [12] Fan, S., Yang, W., & Hu, Y. (2018). Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416-421.
    [13] Gorjian, S., Ebadi, H., Trommsdorff, M., Sharon, H., Demant, M., & Schindele, S. (2021). The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. Journal of Cleaner Production, 292, 126030.
    [14] Awasthi, A., Shukla, A. K., SR, M. M., Dondariya, C., Shukla, K. N., Porwal, D., & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. Energy Reports, 6, 392-405.
    [15] Dimond, K., & Webb, A. (2017). Sustainable roof selection: Environmental and contextual factors to be considered in choosing a vegetated roof or rooftop solar photovoltaic system. Sustainable cities and society, 35, 241-249.
    [16] Bhalkar, A., Wadekar, A., Wagh, M., & Dengle, S. (2022). Issues, challenges, and current lacunas in design, and installation of ground mounted solar PV module mounting structure (MMS). Materials Today: Proceedings.
    [17] Uddin, M. N., Biswas, M. M., & Nuruddin, S. (2022). Techno-economic impacts of floating PV power generation for remote coastal regions. Sustainable Energy Technologies and Assessments, 51, 101930.
    [18] Mustafa, R. J., Gomaa, M. R., Al-Dhaifallah, M., & Rezk, H. (2020). Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 608.
    [19] Gorjian, S., Sharon, H., Ebadi, H., Kant, K., Scavo, F. B., & Tina, G. M. (2021). Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. Journal of Cleaner Production, 278, 124285.
    [20] Gupta, V., Sharma, M., Pachauri, R. K., & Babu, K. D. (2019). Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Solar Energy, 191, 596-622.
    [21] Hernandez-Callejo, L., Gallardo-Saavedra, S., & Alonso-Gómez, V. (2019). A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 188, 426-440.
    [22] Aboagye, B., Gyamfi, S., Ofosu, E. A., & Djordjevic, S. (2022). Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy for Sustainable Development, 66, 165-176.
    [23] Mellit, A., Tina, G. M., & Kalogirou, S. A. (2018). Fault detection and diagnosis methods for photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 91, 1-17.
    [24] Tina, G. M., Cosentino, F., & Ventura, C. (2016). Monitoring and diagnostics of photovoltaic power plants. In Renewable Energy in the Service of Mankind Vol II, pp. 505-516.
    [25] Chine, W., & Mellit, A. (2017, October). ANN-based fault diagnosis technique for photovoltaic stings. In 2017 5th International Conference on Electrical Engineering-Boumerdes, pp. 1-4.
    [26] Tsanakas, J. A., Ha, L. D., & Al Shakarchi, F. (2017). Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery. Renewable Energy, 102, 224-233.
    [27] Tsanakas, J. A., Ha, L., & Buerhop, C. (2016). Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renewable and sustainable energy reviews, 62, 695-709.
    [28] Mellit, A., & Kalogirou, S. (2022). Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems. Renewable Energy, 184, 1074-1090.
    [29] Ma, M., Liu, H., Zhang, Z., Yun, P., & Liu, F. (2019). Rapid diagnosis of hot spot failure of crystalline silicon PV module based on IV curve. Microelectronics Reliability, 100, 113402.
    [30] Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., & Ahmad, A. (2019). Improved outdoor thermography and processing of infrared images for defect detection in PV modules. Solar Energy, 190, 549-560.
    [31] Kandeal, A. W., Elkadeem, M. R., Thakur, A. K., Abdelaziz, G. B., Sathyamurthy, R., Kabeel, A. E., & Sharshir, S. W. (2021). Infrared thermography-based condition monitoring of solar photovoltaic systems: A mini review of recent advances. Solar Energy, 223, 33-43.
    [32] Rahaman, S. A., Urmee, T., & Parlevliet, D. A. (2020). PV system defects identification using Remotely Piloted Aircraft (RPA) based infrared (IR) imaging: A review. Solar Energy, 206, 579-595.
    [33] Shvetsova, S., & Shvetsov, A. (2021). Safety when flying unmanned aerial vehicles at transport infrastructure facilities. Transportation research procedia, 54, 397-403.
    [34] Tribak, H., El Kadmiri, O., & Zaz, Y. (2016, November). Automatic inspection of solar panels based on Images stitching technique. In 2016 International Renewable and Sustainable Energy Conference, pp. 538-542.
    [35] Ismail, H., Rahmani, A., Aljasmi, N., & Quadir, J. (2020). Stitching Approach for PV Panel Detection. In 2020 Advances in Science and Engineering Technology International Conferences, pp. 1-4.
    [36] Henry, C., Poudel, S., Lee, S. W., & Jeong, H. (2020). Automatic detection system of deteriorated PV modules using drone with thermal camera. Applied Sciences, 10(11), 3802.
    [37] Aghaei, M., Leva, S., & Grimaccia, F. (2016, June). PV power plant inspection by image mosaicing techniques for IR real-time images. In 2016 IEEE 43rd Photovoltaic Specialists Conference pp. 3100-3105.
    [38] Francesco, G., Sonia, L., & Alessandro, N. (2018, August). A semi-automated method for defect identification in large photovoltaic power plants using unmanned aerial vehicles. In 2018 IEEE Power & Energy Society General Meeting, pp. 1-5.
    [39] Simon, M., & Meyer, E. L. (2010). Detection and analysis of hot-spot formation in solar cells. Solar Energy Materials and Solar Cells, 94(2), 106-113.
    [40] Espinosa, A. R., Bressan, M., & Giraldo, L. F. (2020). Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks. Renewable Energy, 162, 249-256.
    [41] Wang, J., Zhao, B., & Yao, X. (2020, August). PV Abnormal Shading Detection Based on Convolutional Neural Network. In 2020 Chinese Control and Decision Conference, pp. 1580-1583.
    [42] Sizkouhi, A. M., Aghaei, M., & Esmailifar, S. M. (2021). A deep convolutional encoder-decoder architecture for autonomous fault detection of PV plants using multi-copters. Solar Energy, 223, 217-228.
    [43] Cavieres, R., Barraza, R., Estay, D., Bilbao, J., & Valdivia-Lefort, P. (2022). Automatic soiling and partial shading assessment on PV modules through RGB images analysis. Applied Energy, 306, 117964.
    [44] Simon, M., & Meyer, E. L. (2010). Detection and analysis of hot-spot formation in solar cells. Solar Energy Materials and Solar Cells, 94(2), 106-113.
    [45] Zhao, Y., Lehman, B., de Palma, J. F., Mosesian, J., & Lyons, R. (2011, September). Challenges to overcurrent protection devices under line-line faults in solar photovoltaic arrays. In 2011 IEEE Energy Conversion Congress and Exposition, pp. 20-27.
    [46] Zhao, Y., Lehman, B., de Palma, J. F., Mosesian, J., & Lyons, R. (2011, September). Challenges to overcurrent protection devices under line-line faults in solar photovoltaic arrays. In 2011 IEEE Energy Conversion Congress and Exposition, pp. 20-27.
    [47] de Oliveira, A. K. V., Aghaei, M., & Rüther, R. (2020). Aerial infrared thermography for low-cost and fast fault detection in utility-scale PV power plants. Solar Energy, 211, 712-724.
    [48] Colli, A. (2015). Failure mode and effect analysis for photovoltaic systems. Renewable and Sustainable Energy Reviews, 50, 804-809.
    [49] Kontges, M., Kurtz, S., Packard, C. E., Jahn, U., Berger, K. A., Kato, K., & Friesen, G. (2014). Review of failures of photovoltaic modules.
    [50] Massi Pavan, A., Mellit, A., De Pieri, D., & Lughi, V. (2014). A study on the mismatch effect due to the use of different photovoltaic modules classes in large‐scale solar parks. Progress in photovoltaics: research and applications, 22(3), 332-345.
    [51] Pavan, A. M., Tessarolo, A., Barbini, N., Mellit, A., & Lughi, V. (2015). The effect of manufacturing mismatch on energy production for large-scale photovoltaic plants. Solar Energy, 117, 282-289.
    [52] Pavan, A. M., Mellit, A., De Pieri, D., & Kalogirou, S. A. (2013). A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants. Applied energy, 108, 392-401.
    [53] Cristaldi, L., Faifer, M., Lazzaroni, M., Khalil, M. M. A. F., Catelani, M., & Ciani, L. (2015). Diagnostic architecture: A procedure based on the analysis of the failure causes applied to photovoltaic plants. Measurement, 67, 99-107.
    [54] Kurukuru, V. B., Haque, A., Khan, M. A., & Tripathy, A. K. (2019, April). Fault classification for photovoltaic modules using thermography and machine learning techniques. In 2019 International Conference on Computer and Information Sciences, pp. 1-6.
    [55] Pierdicca, R., Malinverni, E. S., Piccinini, F., Paolanti, M., Felicetti, A., & Zingaretti, P. (2018). Deep convolutional neural network for automatic detection of damaged photovolatic cells. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(2).
    [56] Dunderdale, C., Brettenny, W., Clohessy, C., & van Dyk, E. E. (2020). Photovoltaic defect classification through thermal infrared imaging using a machine learning approach. Progress in Photovoltaics: Research and Applications, 28(3), 177-188.
    [57] Wei, S., Li, X., Ding, S., Yang, Q., & Yan, W. (2019, April). Hotspots Infrared detection of photovoltaic modules based on Hough line transformation and Faster-RCNN approach. In 2019 6th international conference on control, decision and information technologies, pp. 1266-1271.
    [58] Herraiz, A. H., Marugan, A. P., & Marquez, F. P. G. (2020). Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renewable Energy, 153, 334-348.
    [59] Manno, D., Cipriani, G., Ciulla, G., Di Dio, V., Guarino, S., & Brano, V. L. (2021). Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images. Energy Conversion and Management, 241, 114315.
    [60] Alves, R. H. F., de Deus Júnior, G. A., Marra, E. G., & Lemos, R. P. (2021). Automatic fault classification in photovoltaic modules using Convolutional Neural Networks. Renewable Energy, 179, 502-516.
    [61] Zefri, Y., Sebari, I., Hajji, H., & Aniba, G. (2022). Developing a deep learning-based layer-3 solution for thermal infrared large-scale photovoltaic module inspection from orthorectified big UAV imagery data. International Journal of Applied Earth Observation and Geoinformation, 106, 102652.
    [62] Chen, F., Lu, S. M., & Chang, Y. L. (2007). Renewable energy in Taiwan: Its developing status and strategy. Energy, 32(9), 1634-1646.
    [63] Yue, C. D., & Huang, G. R. (2011). An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis. Energy Policy, 39(12), 7988-8002.
    [64] Chen, F., Lu, S. M., Tseng, K. T., Lee, S. C., & Wang, E. (2010). Assessment of renewable energy reserves in Taiwan. Renewable and sustainable energy reviews, 14(9), 2511-2528.
    [65] 「2021-2022年產業技術白皮書」,經濟部技術處,中華民國(2022)。
    [66] IEC 61724: SER Photovoltaic system performance (Part 1: Monitoring; Part 2: Capacity evaluation method; Part 3: Energy evaluation method), Geneva, Switzerland: IEC Central Office, 2017.
    [67] Zhu, H., Jiang, Y., Zhang, C., & Liu, S. (2022, February). Research on Mosaic Method of UAV Low-altitude Remote Sensing Image based on SIFT and SURF. In Journal of Physics: Conference Series Vol. 2203, No. 1, pp. 012027.
    [68] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998; 86(11): 2278-2324.
    [69] Ali, M. U., Khan, H. F., Masud, M., Kallu, K. D., & Zafar, A. (2020). A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography. Solar Energy, 208, 643-651.
    [70] Korkmaz, D., & Acikgoz, H. (2022). An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. Engineering Applications of Artificial Intelligence, 113, 104959.

    無法下載圖示 全文公開日期 2024/09/27 (校內網路)
    全文公開日期 2024/09/27 (校外網路)
    全文公開日期 2024/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE