簡易檢索 / 詳目顯示

研究生: 盧翌綺
Yi-Chi Lu
論文名稱: 金屬玻璃奈米管陣列應用於結晶紫(CV)吸 附表面增強拉曼散射(SERS)之研究
Metallic-Glass Nanotube Arrays as a Surface- Enhanced Raman Scattering (SERS)-active Substrate for Crystal Violet Adsorption
指導教授: 朱瑾
Jinn P. Chu
口試委員: 薛承輝
Chun-hway Hsueh
江偉宏
Wei-Hung Chiang
黃炳照
Bing-Joe Hwang
姚柏文
Pak-Man Yiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 155
中文關鍵詞: 金屬玻璃薄膜金屬玻璃奈米管表面增強拉曼結晶紫葉酸介電常數
外文關鍵詞: Thin film metallic glasses, Metallic glass nanotube array, Surface-enhanced Raman scattering (SERS), Crystal violet, Folic acid, Dielectric constant
相關次數: 點閱:400下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

表面增強拉曼散射(SERS)光譜可將材料表面所吸附分子的拉曼訊號增強數倍,且廣泛用於分子分析應用、醫藥及環境工程等。近年來,很多文獻利用不同金屬基板增加其表面積以達到訊號提升之效果。本研究利用微影製程、磁控濺鍍技術製造出規則的金屬玻璃奈米管(MGNT)陣列,得到在5 mm^2區域上擁有1,600,000,000個單獨的奈米管,其直徑約為650 nm,高度為650 nm。金屬玻璃具備優異的機械性質及化學性質,且為一非晶結構,相較於其他結晶金屬更可以避免在拉曼光譜中於晶界中產生的散射。
本研究中,首先探討9種不同金屬玻璃鍍層之介電常數作為SERS基材選用考量,並成功製備出5種不同金屬玻璃成分的奈米管陣列,分別為:鎳基(Ni38.5B1.0Si52.7Cr2.1Fe5.7)、鈦(Ti38Zr10.3Cu37.4Nb6.6Co7.7)、銅基(Cu48Zr42Al6Ti4)、鎢基(W82.9Ni9.9B7.2)及鈀基 (Pd73.8Cu12.5Si13.7),由於鈀基金屬玻璃鍍層(TFMG)具備良好的介電常數及貴金屬不易氧化之性質,因此以鈀基為此研究之SERS基板。
本研究中主要選用結晶紫Crystal Violet (CV)分子做為檢測SERS增強效果之代測物,因為其廣泛被用於拉曼單分子研究,且具有非常大的拉曼散射截面積,此外為有效確定CV分子吸附於金屬玻璃奈米管,將進行未清洗及清洗兩組試驗分析,發現CV最低濃度可分別測得10^-11 M及10^-10 M,且相較於矽基板與TFMG靈敏許多,其增強因子高達6.39 × 10^8,這可以歸咎於MGNT的表面粗糙度為207 nm,遠高於TFMG的0.428 nm,因而提供了更多CV分子吸附的面積。除此之外,再經清洗過的奈米管中,藉由過SEM觀察浸泡CV溶液前後奈米管於相同位置的變化,發現當濃度為10^-3 M時管壁厚度增加約33%,且管壁厚度大都來自於奈米管外壁之吸附,隨著CV濃度的降低至10^-10 M,管壁厚度增加降低為22%,然而在10^-11 M時管壁僅僅增加約7% (可視為誤差範圍值內),而造成無法於10^-11 M中檢測到CV的存在,因此確認了CV吸附量與拉曼增強之間的量化關係;本文亦討論未清洗之奈米管,發現當濃度為10-3 M時管壁厚度大幅增加約63%,當濃度降低至10^-10 M,管壁厚度增加降低為23%,然而在10^-11 M時管壁增加約20%,相較於清洗過後之奈米管有顯著差異。同時利用FIB及TEM做橫切的奈米管陣列的觀察,也進一步證實CV的吸附層隨著CV濃度增加而增厚,且附著於外徑。除此之外,透過FDTD模擬結果與Raman mapping結果相互證實了奈米管的熱點存在,不只在奈米管中及頂端可發現電磁增強效果,且於奈米管之間隙亦達到增強訊號。整體而言,金屬玻璃奈米管陣列除了提供大的表面積可增強拉曼強度外,亦可觀察到CV分子吸附的情形。本研究亦採用大分子的葉酸Folic Acid (FA)進行分析,作為與小分子CV吸附之對照組實驗,於 FA最低濃度可檢測得10^-7 M,進一步證明金屬玻璃奈米管陣列能有效使用於SERS分子吸附之檢測應用。


Surface-enhanced Raman scattering (SERS) is a way to significantly increase the intensity of Raman signals of the material molecules adsorbed on the surface, which is widely used in molecular analysis applications, medicine, and environmental engineering. Recently, many kinds of literature have used different metal substrates to increase the surface area and roughness to realize signal enhancement. Therefore, in this study, lithography was used in the patterning of a contact-hole array to fabricate a regular nanotube array by sputter-depositing a coating of metallic glass. The resulting metallic glass nanotube (MGNT) array possesses 1,600,000,000 individual nanotubes on a 5 mm^2 area with the hole diameter was ~650 nm, and height was ~650 nm. Moreover, metallic glasses with the disordered atomic structure have unique mechanical and chemical properties. Compared with the crystal metal, amorphous metallic glasses have no scattering at grain boundaries.
In this study, the dielectric constants were first investigated as the selection of SERS substrates of nine systems of thin film metallic glasses (TFMGs). After that, we successfully fabricated five systems of MGNTs arrays such as Ni- (Ni38.5B1.0Si52.7Cr2.1Fe5.7), Ti- (Ti38Zr10.3Cu37.4Nb6.6Co7.7), Cu- (Cu48Zr42Al6Ti4), W- (W82.9Ni9.9B7.2), and Pd- (Pd73.8Cu12.5Si13.7) based MGNTs. Pd-based TFMG is selected as the SERS substrate because it is a noble metal and has a negative dielectric constant.
In the experiment, the crystal violet (CV) is selected for probe molecule for its large Raman cross-section. There are two sets of samples (with and without DI water rinse) in order to effectively determine the adsorption of CV molecules on the metallic glass nanotubes. It is discovered that the limit of detection of CV solution are 10^-10 M and 10^-11 M, respectively, with and without water rinse. These are more sensitivity than Si substrate and TFMG, and the enhancement factor is 6.39 × 10^8. This can be attributed to the surface roughness of MGNT is 207 nm much higher than 0.428 nm of TFMG. Thus, it provides more CV molecule adsorption area. In addition, with DI water rinse, the samples were examined by SEM before and after immersing in CV solution with water rinse at exactly the same five locations. The increment in wall thickness is ~33% for 10^-3 M, and decreases of the CV concentration to 10^-10 M is ~22%. The increase in wall thickness is mostly due to the adsorption of CV molecules on the outer wall. However, the negligible increment of ~7% for 10^-11 M is considered to be within experimental error and insignificant in Raman signal. Therefore, the quantitative relationship between the amount of CV adsorption and Raman enhancement was confirmed. Moreover, CV adsorptions without water rinse are also discussed in the appendix. The increment in wall thickness is ~63% for 10^-3 M, and decreases of the CV concentration to 10^-10 M is ~23%. However, the wall thickness increases ~20% for 10^-11 M, which is more significantly different from that of with water rinse. Cross-sectional FIB-prepared TEM observations have been carried out to further characterize the CV-adsorption on the wall of nanotube, confirming the presence of CV molecules on the outer wall. Moreover, the simulation results and Raman mapping were confirmed the existence of hot spots in MGNTs. The EM field strongly enhances in the top of nanotube arrays and gradually decreases to the nanotube gaps. Overall, MGNTs not only provide the large surface area to enhance the Raman signal, but also allow us to quantify the adsorption of CV molecules. In this study, macromolecule folic acid (FA) was also selected for a comparison study. The limit of detection in this case was 10^-7 M. It thus is further confirmed that metal glass nanotube arrays can be effectively applied to the two different types of molecule adsorption for SERS applications.

摘要 Abstract Acknowledgements Content List of Figures List of Table Chapter 1 Introduction 1.1Objectives of study Chapter 2 Literature Review 2.1 Plasmonics 2.1.1 Surface plasmon resonance (SPR) 2.1.2 Localized surface plasmon resonance (LSPR) 2.2 Raman scattering 2.3 Surface-Enhanced Raman Scattering (SERS) 2.3.1 Electromagnetic enhancement (EM) 2.3.2 Chemical enhancement (CM) 2.4 Classification of SERS substrates 2.4.1 Nanostars 2.4.2 Nanoparticles 2.4.3 Nanoporous and other types of structures 2.4.4 Optical properties 2.5 Potential application of Crystal violet 2.6 Metallic glass (MG) and Thin Film Metallic Glass (TFMG) 2.6.1 Characteristics of MGs 2.6.2 Thin Film Metallic Glass: Properties and Fabrications 2.6.2 Advantages of Palladium 2.7 Metallic Glass Nanotube Arrays (MGNT arrays) 2.7.1 Unique properties of MGNT arrays 2.7.2 Bioanalytical applications Chapter 3 Experimental Procedure 3.1 Metallic Glass Nanotube (MGNT) Arrays Fabrication 3.1.1 Substrate and photoresist preparations 3.1.2 Thin-film Metallic Glass (TFMG) deposition 3.1.3 Photoresist removal 3.1.4 Surface morphology analysis 3.2 Characterizations of TFMG 3.2.1 Crystallographic analysis 3.2.2 Chemical analysis 3.2.3 Microstructural analysis 3.2.4 Dielectric properties 3.3 Characterizations of Nanotube array 3.3.1 Wettability 3.3.2 Optical properties 3.3.3 Chemical composition mapping 3.3.4 Microstructural analysis 3.4 Raman spectroscopy 3.4.1 Raman spectrum measurement 3.4.2 Surface morphology observation of MGNT Chapter 4 Results and Discussion 4.1 TFMG Properties 4.1.1 Chemical composition & crystallographic analyses 4.1.2 Dielectric constant evaluation 4.2 Nanotube Properties 4.2.1 Microstructural analysis 4.2.2 Surface properties 4.2.3 Auger analysis 4.2.4 Optical properties 4.2.5 Microstructural analysis 4.3 Raman spectra 4.3.2 Observation of MGNT surface morphology 4.3.3 Raman spectra for S-MGNT arrays 4.4 Discussion Chapter 5 Conclusions Reference Appendix Raman spectra of CV without DI water rinse Raman spectra of folic acid (FA) Simulated of electric field intensity enhancement

[1]Lee CW, Tseng FG, Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis, Biomicrofluidics, 12 (2018) 011502
[2]Heidi Fisk, Chloe Westley, Nicholas J. Turner, and Royston Goodacre, Achieving optimal SERS through enhanced experimental design, J Raman Spectrosc, 47 (2016) 59-66
[3]Cheng Wang, Li-Wei Nien, Hsin-Chia Ho, Yi-Chen Lai, and Chun-Hway Hsueh, Surface plasmon excited on imprintable thin-film metallic glasses for surface-enhanced raman scattering applications , ACS Applied Nano Materials, 1 (2018) 908-914.
[4]Antonio I. Fernandez-Dominguez, Francisco J. Garcia-Vidal, Luis Martin-Moreno, Unrelenting plasmons, Nature Photonics, 11 (2017) 8-10
[5]Novotny, L. Hecht, B. Principles of Nano-optics, Cambridge University Press, (2012).
[6]Capolino, F. Theory and phenomena of metamaterials, CRC Press, (2009).
[7]Mills, D. L, Agranovich, V. M., Surface Polaritons: Electromagnetic waves at surfaces and interfaces, Optica Acta, 30 (1983) 1501-1506.
[8]Surbhi Lal, Stephan Link, Naomi J Halas, Nano-optics from sensing to wave guiding. Nat. Photonics, 1 (2007) 641-648.
[9]Jon A Schuller, Edward S Barnard, Wenshan Cai, Young Chul Jun, Justin S. White, Mark L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater.9 (2010) 193-204.
[10]Nina Jiang, Xiaolu Zhuo, and Jianfang Wang, Active Plasmonics: Principles, Structures, and applications, Chemical Reviews, 118 (2017) 3054-3099.
[11]William L. Barnes, Alain Dereux, Thomas W. Ebbesen, Surface Plasmon Subwavelength Optics. Nature, 424 (2003) 824-830.
[12]A. N. Grigorenko, Petr Nikitin, AV Kabashin, Phase Jumps and interferometric surface plasmon resonance imaging, Applied Physics Letters, 75 (1999) 3917-3919.
[13]Stefan Alexander Maier, Plasmonics: fundamental and applications, SpringerVerlag: Berlin, Springer (2007)
[14]Willets KA, Van Duyne RP, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry, 58 (2007) 267-297
[15]C. V. Raman, A new radiation, Indian Journal of Physics, 2 (1928) 387-398.
[16]C. V. Raman, K. S. Krishnan, A new type of secondary radiation, Nature, 121 (1928) 501-502.
[17]A. Smekal, Zur Quantentheorie der Dispersion, Naturwissenschaften, 11 (1923) 873-875.
[18]Catarina Costa Moura1, Rahul S. Tare, Richard O. C. Oreffo and Sumeet Mahajan, Raman spectroscopy and coherent anti-Stokes Raman scattering imaging:prospective tools for monitoring skeletal cells and skeletal regeneration, J R Soc Interface, 13 (2016) 118.
[19]Ian Bruzas, William Lum, Zohre Gorunmez and Laura Sagle, Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond, Analyst, 143 (2018) 3990-4008
[20]K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Surface-enhanced Raman scattering and biophysics, Journal of Physics-Condensed Matter, 14 (2002) R597-R624.
[21]M. Moskovits, Surface-enhanced spectroscopy, Reviews of Modern Physics, 57 (1985) 783-826.
[22]Raman C V, Krishnan K S, A new type of secondary radiation, Nature, 121 (1928) 501-502.
[23]Stiles PL, Dieringer JA, Shah NC, Van Duyne RP, Surface-enhanced raman spectroscopy, Annual Review of Analytical Chemistry 1 (2008) 601-626.
[24]Kristen D. Alexander, Kwan Skinner, Shunping Zhang, Hong Wei, Rene Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Letters, 10 (2010) 4488-4493.
[25]Albrecht M G, Creighton J A, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, 99 (1977) 5215-5217.
[26]B.PettingerU, WenningH, Wetzel, Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes. Surface Science, 101 (1980) 409-416.
[27]M Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, The Journal of Chemical Physics, 69 (1978) 4159-4161.
[28]R. M. Hexter, M. G Albrecht , Metal surface Raman spectroscopy: theory. Spectrochimica Acta 35 (1979) 233-251.
[29]Ujjal Kumar Sur, Surface-Enhanced Raman Scattering, IntechOpen (2017)
[30]Roberto Pilot, Raffaella Signorini, Christian Durante, Laura Orian, Manjari Bhamidipati and Laura Fabris, A Review on Surface-Enhanced Raman Scattering, Biosensors, 9 (2019) 1-99.
[31]A. Campion, J. E. Ivanecky, C. M. Child, M. Foster, On the mechanism of chemical enhancement in Surface-Enhanced Raman-Scattering, Journal of the American Chemical Society, 117 (1995) 11807-11808.
[32]Alexandre G.Brolo, Donald E., Irish, Brian D.Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions, Molecular Structure, 405 (1997) 29-44.
[33]Xiu-Mei Lin, Yan Cui, Yan-Hui Xu, Bin Ren , Zhong-Qun Tian, Surface-enhanced Raman spectroscopy: substrate-related issues, Analytical and Bioanalytical Chemistry, 7 (2009) 1729-1745.
[34]Thomas W. H. Oates, Mukesh Ranjan, Stefan Facsko, and Hans Arwin, Highly anisotropic effective dielectric functions of silver nanoparticle arrays, Optics Express, 99 (2011) 2014-2028.
[35]M. Ranjan, Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays, J Nanopart Res.15 (2013) 1908
[36]Fleischmann M, Hendra P J, McQuillan A J, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, 26 (1974) 163-166.
[37]Won Joon Cho, Youngsuk Kim, and Jin Kon Kim, Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility, ACS Nano, 6 (2012) 249-255.
[38]O. Bibikov, J. Haas, A. I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski and B. Mizaikof, Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst, 142 (2017) 951-958
[39]Tianming Li, Yuanyuan Xu, Yang Feng, Chao Zhang, Chuanxi Yangc, Zhencui Sun, Hao Zhang, Xiaobo Yuan, Tingyin Ning, Cheng Yang, Self-assembly of the stretchable AuNPs@MoS2@GF substrate for the SERS application, Applied Surface Science, 423 (2017) 1072-1079
[40]Jiajie Yu, Muzhong Shen, Siyu Liu, Feng Li, Dongping Sun, Tianhe Wang, A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate, Applied Surface Science, 406 (2017) 285-293.
[41]Samarpita Senapati, Suneel Kumar Srivastava, Shiv Brat Singh, Ajit R. Kulkarni, SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection, Environmental Research, 135 (2014) 95-104.
[42]Subrata Kundu, Su-In Yi, Lian M, Yunyun Chen, Wei Dai, Alexander M. Sinyukov and Hong Liang, Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds, Dalton Transactions, 29 (2017) 1-42
[43]Bhavya Sharma, Renee R.Frontiera, Anne-Isabelle Henry, Emilie Ringe, Richard P.Van Duyne, SERS: Materials, applications, and the future, Material Today, 15 (2012) 16-25.
[44]Alyssa B. Zrimsek, Nolan L. Wong, Richard P. Van Duyne, Single molecule Surface-Enhanced Raman Spectroscopy: A critical analysis of the bianalyte versus isotopologue, The Journal of Physical Chemistry and the Physical Chemistry, 120 (2016) 5133-5142.
[45]Youssef Miyah, Anissa Lahrichi, Meryem Idrissi, Saı¨d Boujraf, Hasnae Taouda, Farid Zerrouq, Assessment of adsorption kinetics for removal potential of crystal violet dye from aqueous solutions using moroccan pyrophyllite, Journal of the Association of Arab Universities for Basic and Applied Sciences, 23 (2017) 20-28.
[46]Alexander M. Maley, Jack L. Arbiser, Gentian Violet: a 19th century drug re-emerges in the 21st century, Experimental Dermatology, 22 (2013) 775-780.
[47]Sidra Shoukat, Haq Nawaz Bhatti, Munawar Iqbal , Saima Noreen, Mango stone biocomposite preparation and application for crystalviolet adsorption: A mechanistic study, Microporous and Mesoporous Materials, 239 (2017) 180-189.
[48]Sung Ju Cho, Young-Hoon Ahn, Kaustabh Kumar Maiti, U. S. Dinish, Chit Yaw Fu,
[49]Praveen Thoniyot, Malini Olivo and Young-Tae Chang, Combinatorial synthesis of a triphenylmethine library and their application in the development of Surface Enhanced Raman Scattering (SERS) probes, Chem. Commun.46 (2010) 722-724.
[50]Janina Kneipp, Harald Kneipp, Anpuchchelvi Rajadurai, Robert W. Redmond, Katrin Kneipp, Optical probing and imaging of live cells using SERS labels, Journal of Raman Spectroscopy, 40 (2009) 1-5.
[51]E. J. Liang, X. L. Ye,and W. Kiefer, Surface-Enhanced Raman spectroscopy of crystal violet in the presence of halide and halite ions with near-infrared wavelength excitation, The Journal of Physical Chemistry A, 101 (1997) 7330-7335.
[52]Zhang Hao-Ran, Man Shi-Qing. Surface-enhanced Raman Scattering activities of crystal violet based on Au/SiO2, Analytical Chemistry, 39 (2011) 821-826.
[53]W. Klement, R.H. Willens, P.O.L. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature 187 (1960) 869-870.
[54]Inoue, A. and Akihisa, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48(1) (2000) 279-306.
[55]A.L. Greer, Metallic glasses, Science 267 (1995) 1947-1953.
[56]W.L. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials, Progress in Materials Science 30 (1986) 81-134.
[57]S. Kavesh, Principles of fabrication(of metallic glasses), metallic glasses, ASM, Metals Park, Ohio. (1978) 36-73.
[58]A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Materialia, 59 (2011) 2243-2267.
[59]M.F. Ashby, A.L. Greer, Metallic glasses as structural materials, Scripta Materialia, 54 (2006) 321-326.
[60]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48 (2000) 279-306.
[61]C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, (2017).
[62]Haoling Jia, Fengxiao Liu, Weidong Li, Gongyao Wang, JinnP.Chu, Jason S.C.Jang, Yanfei Gao, Peter K.Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Soild Films, 561 (2014) 2-27.
[63]J. K. Chen, W. T. Chen, C. C. Cheng, C. C. Yu and J. P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations, Materials Today, 21 (2018) 178-185.
[64]Wei-Ting Chen, Shao-Sian Li, Jinn P. Chu, Kuei Chih Feng and Jem-Kun Chen, Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance, Biosensors and Bioelectronics, 102 (2018) 129-135.
[65]Wei-Ting Chen, Karthikeyan Manivannan, Chia-Chi Yu, Jinn P. Chu and Jem-Kun Chen, Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass, Nanoscale, 3(2018) 1366-1375.
[66]Bhavya Sharma, Renee R. Frontiera, Anne-Isabelle Henry, Emilie Ringe, and Richard P. Van Duyne, SERS: materials, applications, and the future, material today, 15 (2012) 16-25.
[67]Lasse Jensen and George C. Schatz, Resonance raman scattering of rhodamine 6g as calculated using time-dependent density functional theory, The Journal of Physical Chemistry A, 110 (2006) 5973-5977
[68]C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, M. Moller, Spectroscopy of single metallic nanoparticles using total internal reflection microscopy, Applied Physics Letters, 77 (2000) 2949-2951.
[69]A. Mittal, J. Mittal, A. Malviya, D. Kaur, and V. K. Gupta, Journal of Colloid and Interface Science, 343 (2010) 463-473.
[70]Mittal, Mittal, Malviya, Kaur, Gupta, Senthilkumaar, Kalaamani, Subburaam, 2006
[71]Qingli Huang, Jing Li, Wenxian Wei, Yongping Wu and Ting Li, Synthesis, characterization and application of TiO2/Ag recyclable SERS substrates, RSC Adv. 7 (2017) 26704-26709.
[72]HORIBA, http://www.horiba.com/us/en/scientific/products/raman-spectroscopy/raman-academy/raman-faqs/what-analysis-spot-or-laser-spot-size-is-used-for-a-raman-microscope/
[73]S. Siddhanta, V. Thakur, C. Narayana, S. M. Shivaprasad, Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing, ACS Applied Materials & Interfaces, 4 (2012) 5807-5812.
[74]Bo-Kai Chao, Hsin-Hung Cheng, Li-Wei Nien, Miin-Jang Chen, Tadaaki Nagao,Jia-Han Li, Chun-Hway Hsueh, Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy, Applied Surface Science, 357 (2015) 615-621.
[75]Minh Tran, Alison Whale, and Sonal Padalkar, Exploring the efficacy of platinum and palladium nanostructures for organic molecule detection via raman spectroscopy, Sensors, 18 (2018)
[76]Li-Miao Chen and You-Nian Liu, Palladium crystals of various morphologies for SERS enhancement, CrystEngComm, 13 (2011) 6481-6487
[77]Zhen Li, Minghong Wang, Yang Jiao, Aihua Liu, Shuyun Wang, Chao Zhang, Cheng Yang, Yuanyuan Xu, Chonghui Li, Baoyuan Man, Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis, Sensors and Actuators B: Chemical, 255 (2018) 374–383
[78]Raïssa Ainsworth Rustichelli Teixeira, Franciely Rufino A. Lima, Pâmella Campos Silva, Luiz Antônio Sodré Costa, Antonio Carlos Sant'Ana, Tracking chemical interactions of folic acid on gold surface by SERS spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223 (2019) 117305

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE