簡易檢索 / 詳目顯示

研究生: 駱昱銓
Yu-Chuan Luo
論文名稱: 適用於傳輸線量測之去嵌入技術
The De-Embedding Technique for Transmission Line Measurement
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 林丁丙
Ding-Bing Lin
林信標
Hsin-Piao Lin
廖文照
Wen-Jiao Liao
曾子芳
Tzu-Fang Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 訊號完整性校正2X-Thru去嵌入特徵值阻抗修正
外文關鍵詞: Signal Integrity, Calibration, 2X-Thru De-Embedding, Eigenvalue, Impedance-Corrected
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高頻電路的日益普及與廣泛應用,傳輸速度也大幅提升,因應高頻電路的趨勢,延伸出對量測數據去嵌入的議題。這是由於電氣介面的類型不同,待測物無法直接與向量網路分析儀連接,須透過夾具作為待測物與向量網路分析儀的連接介面,而量測得到的數據會包含夾具的特性,須透過去嵌入技術將夾具的特性移除。因此,如何根據不同的需求,設計適合的去嵌入方案,並確保去嵌入後數據的訊號完整性,成為去嵌入議題的主要任務。
    本論文目標是藉由降低設計校正物件的數量,減少量測時不確定性的因素以及量測的時間,將去嵌入技術以更有效率的方式應用到傳輸線,提升實務上的靈活性。然而,隨著量測頻率提高的需求,去嵌入技術在高頻的處理產生問題,訊號完整性隨著頻率升高而降低。本論文藉由提出結合實際數據與模擬分析的方法,探討頻寬限制的原因。從結果可明顯觀察到不同模擬之間訊號完整性的變化,證明本論文探討頻寬限制的原因,最後透過修正不理想因素,在不增加硬體的成本的前提下提升訊號完整性,進而達到延伸頻寬的效果。


    In the tendency of increasing popularity and wide application of high-frequency circuits, the transmission speed is greatly improved. In response to the trend of high-frequency circuits, the technique of de-embedding measurement is extended. The device under test cannot be directly connected with the vector network analyzer, because of the different types of electrical interface. It needs to use the fixture as the connection interface between the object under test and the vector network analyzer. The measured data will include the characteristics of the fixture, and the characteristics of the fixture need to be removed by de-embedding. Therefore, how to design a suitable de-embedding scheme, according to different needs and ensure the signal integrity of the de embedded data has become the main task of the de-embedding topic.
    The goal of this paper is to apply de-embedding technology to transmission lines in an efficient way and improve the flexibility of practice by reducing the number of design calibration structure, reducing the uncertain factors and measurement time. However, with the increase of measurement frequency, de-embedding technology has problems in high-frequency processing, and the signal integrity decreases with the increase of frequency. In this paper, a method combining actual data and simulation analysis is proposed to explore the causes of bandwidth limitation. From the results, we can clearly observe the changes of signal integrity between different experiments, which proves that this paper discusses the reasons for the bandwidth limitation. Finally, by correcting the undesirable factors, the results can improve the signal integrity without increasing the hardware cost. Therefore, this paper can guide to achieve the effect of extending the bandwidth.

    摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 文獻探討 3 1.4 論文架構 5 第二章 微波網路分析 6 2.1 散射參數矩陣 7 2.2 傳輸參數矩陣 10 2.3 混合模態散射參數 13 2.4 訊號流程圖 20 第三章 校正理論與去嵌入技術 24 3.1 SOLT校正理論 25 3.2 TRL校正理論 34 3.3 2X-Thru去嵌入技術 41 3.4 Eigenvalue去嵌入技術 52 3.4.1 特徵值與特徵向量 52 3.4.2 對角化 54 3.4.3 基礎模型 56 第四章 去嵌入演算法應用 59 4.1 雙埠網路去嵌入演算法應用 59 4.1.1 雙埠網路模擬數據分析 59 4.1.2 雙埠網路實際量測數據 64 4.2 四埠網路去嵌入演算法應用 68 4.2.1 四埠網路模擬數據分析 68 4.2.2 四埠網路實際量測數據 73 第五章 頻寬限制原因與改善方案 77 5.1 頻寬限制原因探討 77 5.2 頻寬限制原因驗證 81 5.3 頻寬限制改善方案 93 第六章 結論 96 參考文獻 97

    [1] H. Cho and D. E. Burk, "A Three-Step Method for the De-Embedding of High-Frequency S-Parameter Measurements," IEEE Transactions on Electron Devices, vol. 38, no. 6, pp. 1371-1375, June 1991.
    [2] J. Stenarson and K. Yhland, "Residual error models for the SOLT and SOLR VNA calibration algorithms," 2007 69th ARFTG Conference, 2007, pp. 1-7.
    [3] C. Seguinot, P. Kennis, J. Legier, F. Huret, E. Paleczny and L. Hayden, "Multimode TRL—A New Concept in Microwave Measurements: Theory and Experimental Verification," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 5, pp. 536-542, May 1998.
    [4] G. F. Engen and C. A. Hoer, "Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer," IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 987-993, Dec. 1979.
    [5] J. E. Zuniga-Juarez, J. A. Reynoso-Hernandez and M. C. Maya-Sanchez, "An improved Multiline TRL method," 2006 67th ARFTG Conference, 2006, pp. 139-142.
    [6] "IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at Frequencies up to 50 GHz," IEEE Std 370-2020, pp. 1-147, Jan. 2021.
    [7] J. Dunsmore, N. Cheng and Y. Zhang, "Characterizations of asymmetric fixtures with a two-gate approach," 77th ARFTG Microwave Measurement Conference, 2011, pp. 1-6.
    [8] C. Wu, B. Chen, T. Mikheil, J. Fan and X. Ye, "Error Bounds Analysis of De-embedded Results in 2x Thru De-embedding Methods," 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 2017, pp. 532-536.
    [9] S. A. Smith, Z. Zhang and K. Aygün, "Assessment of 2x Thru De-embedding Accuracy for Package Transmission Line DUTs," 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2020, pp. 1-3.
    [10] H. Anton, C. Rorres, Elementary Linear Algebra: Applications Version, 11th Edition. John Wiley & Sons, Inc., 2013.
    [11] B. Chen, X. Ye, B. Samaras and J. Fan, "A Novel De-Embedding Method Suitable for Transmission-Line Measurement," 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 2015, pp. 1-4.
    [12] Y. Shlepnev, "Broadband material model identification with GMS-parameters," 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), 2015, pp. 155-158.
    [13] S. Fregonese et al., "Comparison of On-Wafer TRL Calibration to ISS SOLT Calibration with Open-Short De-Embedding up to 500 GHz," IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 1, pp. 89-97, Jan. 2019.
    [14] S. Moon, X. Ye and R. Smith, "Comparison of TRL Calibration vs. 2x Thru De-embedding Methods," 2015 IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, 2015, pp. 176-180.
    [15] Y. Chen, B. Chen, J. He, R. Zai, J. Fan and J. Drewniak, "De-embedding Comparisons of 1X-Reflect SFD, 1-Port AFR, and 2X-Thru SFD," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 2018, pp. 160-164.
    [16] D. M. Pozar, Microwave Engineering, 4th Edition. John Wiley & Sons, Inc., 2011.
    [17] C. S. Kong, "A General Maximum Power Transfer Theorem," IEEE Transactions on Education, vol. 38, no. 3, pp. 296-298, Aug. 1995.
    [18] R. Mavaddat, Network Scattering Parameters, World Scientific Publishing Company, 1996.
    [19] J. Frei, X. -D. Cai and S. Muller, "Multiport S-Parameter and T-Parameter Conversion With Symmetry Extension," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 11, pp. 2493-2504, Nov. 2008.
    [20] D. E. Bockelman and W. R. Eisenstadt, "Combined Differential and Common-Mode Scattering Parameters: Theory and Simulation," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 7, pp. 1530-1539, July 1995.
    [21] D. E. Bockelman and W. R. Eisenstadt, "Pure-Mode Network Analyzer for On-Wafer Measurements of Mixed-Mode S-Parameters of Differential Circuits," IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 7, pp. 1071-1077, July 1997.
    [22] W. Fan, A. Lu, L. L. Wai and B. K. Lok, "Mixed-Mode S-Parameter Characterization of Differential Structures," Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003), 2003, pp. 533-537.
    [23] A. Ferrero and M. Pirola, "Generalized Mixed-Mode S-Parameters," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 458-463, Jan. 2006.

    無法下載圖示 全文公開日期 2025/07/19 (校內網路)
    全文公開日期 2025/07/19 (校外網路)
    全文公開日期 2025/07/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE